Zhen Liu, Hao-dong Jiang, Hao-yuan Kan, Li Zhang, Yu-xin Rao, Xiao-bing Jiang, Ming-hui Li, Qi Wang
{"title":"RIT1 Promotes the Proliferation of Gliomas Through the Regulation of the PI3K/AKT/c-Myc Signalling Pathway","authors":"Zhen Liu, Hao-dong Jiang, Hao-yuan Kan, Li Zhang, Yu-xin Rao, Xiao-bing Jiang, Ming-hui Li, Qi Wang","doi":"10.1111/jcmm.70362","DOIUrl":null,"url":null,"abstract":"<p>Recently, RIT1 has been implicated in a range of neurological disorders; however, its precise function in glioma pathogenesis is not yet well-defined. This study employed quantitative reverse transcription PCR (qRT-PCR), Western blotting (WB), immunohistochemistry (IHC) and additional methodologies to assess RIT1 expression levels in glioma tissues. Furthermore, the study investigated its influence on glioma progression through a series of functional experiments. Animal models were also utilised to elucidate the mechanistic role of RIT1, with a particular focus on its effects on the PI3K/AKT signalling pathway. Research findings showcased that RIT1 is significantly overexpressed in gliomas and exhibits a strong correlation with tumour grade and unfavourable clinical outcomes. Furthermore, RIT1 serves as an independent prognostic marker of poor prognosis. Functional assays demonstrate that RIT1 facilitates the aggressiveness of glioma cells by activating the PI3K/AKT signalling. Additionally, it promotes tumour proliferation by inhibiting apoptosis and accelerating cell cycle progression. This study demonstrates that RIT1 significantly contributes to the aggressive phenotype and unfavourable prognosis of glioma, indicating its ability as a therapeutic target for glioma treatment.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, RIT1 has been implicated in a range of neurological disorders; however, its precise function in glioma pathogenesis is not yet well-defined. This study employed quantitative reverse transcription PCR (qRT-PCR), Western blotting (WB), immunohistochemistry (IHC) and additional methodologies to assess RIT1 expression levels in glioma tissues. Furthermore, the study investigated its influence on glioma progression through a series of functional experiments. Animal models were also utilised to elucidate the mechanistic role of RIT1, with a particular focus on its effects on the PI3K/AKT signalling pathway. Research findings showcased that RIT1 is significantly overexpressed in gliomas and exhibits a strong correlation with tumour grade and unfavourable clinical outcomes. Furthermore, RIT1 serves as an independent prognostic marker of poor prognosis. Functional assays demonstrate that RIT1 facilitates the aggressiveness of glioma cells by activating the PI3K/AKT signalling. Additionally, it promotes tumour proliferation by inhibiting apoptosis and accelerating cell cycle progression. This study demonstrates that RIT1 significantly contributes to the aggressive phenotype and unfavourable prognosis of glioma, indicating its ability as a therapeutic target for glioma treatment.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.