Jay Mjr Carr, Jodie Koep, L Madden Brewster, Ayechew Getu, Jonah C Dizon, Declan Isaak, Andrew Steele, Connor A Howe, Philip N Ainslie
{"title":"Acute selective serotonin-reuptake inhibition elevates basal ventilation, attenuates the rebreathing ventilatory response, independent of cerebral perfusion.","authors":"Jay Mjr Carr, Jodie Koep, L Madden Brewster, Ayechew Getu, Jonah C Dizon, Declan Isaak, Andrew Steele, Connor A Howe, Philip N Ainslie","doi":"10.1152/japplphysiol.00751.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Serotonin (5-HT) is integral to signalling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed. We hypothesized that a single SSRI dose in healthy adults would not impact resting ventilation, global CBF, or brainstem blood flow reactivity to CO<sub>2</sub>, but would steepen the slope of the hypercapnic ventilatory response (HCVR). In 15 young, healthy adults (6 female, 25±5years, 70±10kg, 172±15cm, 24±4kg/cm<sup>2</sup>), using a placebo-controlled, double-blind, randomized design, we assessed baseline cardiorespiratory and CBF (duplex ultrasound) responses to SSRI (40 mg citalopram), as well as to hyperoxic hypercapnic rebreathing (as an index of central chemoreception). Baseline measures of mean arterial pressure, heart rate, minute ventilation, CBF and the pressures of end-tidal oxygen and carbon dioxide, were all not influenced by SSRI. Likewise, the sum of blood flowing through both vertebral arteries (as an index of brainstem blood flow) during hypercapnia was also unchanged. In contrast, basal ventilation (during rebreathing following hyperventilation and during hyperoxia) was elevated from 9.5±4.1 to 11.5±5.5 L/min (interaction p=0.023); and, counter to our hypothesis, the central chemoreceptor-mediated ventilatory response to CO<sub>2</sub> was reduced following SSRI from 7.5±5.3 to 5.1±4.1 L/min/mmHg (interaction p=0.027). The implications of these findings in health and pathology remain to be determined.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00751.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Serotonin (5-HT) is integral to signalling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed. We hypothesized that a single SSRI dose in healthy adults would not impact resting ventilation, global CBF, or brainstem blood flow reactivity to CO2, but would steepen the slope of the hypercapnic ventilatory response (HCVR). In 15 young, healthy adults (6 female, 25±5years, 70±10kg, 172±15cm, 24±4kg/cm2), using a placebo-controlled, double-blind, randomized design, we assessed baseline cardiorespiratory and CBF (duplex ultrasound) responses to SSRI (40 mg citalopram), as well as to hyperoxic hypercapnic rebreathing (as an index of central chemoreception). Baseline measures of mean arterial pressure, heart rate, minute ventilation, CBF and the pressures of end-tidal oxygen and carbon dioxide, were all not influenced by SSRI. Likewise, the sum of blood flowing through both vertebral arteries (as an index of brainstem blood flow) during hypercapnia was also unchanged. In contrast, basal ventilation (during rebreathing following hyperventilation and during hyperoxia) was elevated from 9.5±4.1 to 11.5±5.5 L/min (interaction p=0.023); and, counter to our hypothesis, the central chemoreceptor-mediated ventilatory response to CO2 was reduced following SSRI from 7.5±5.3 to 5.1±4.1 L/min/mmHg (interaction p=0.027). The implications of these findings in health and pathology remain to be determined.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.