Pamela Rufus-Membere, Kara B Anderson, Kara L Holloway-Kew, Mark A Kotowicz, Adolfo Diez-Perez, Julie A Pasco
{"title":"Associations between bone material strength index and FRAX scores.","authors":"Pamela Rufus-Membere, Kara B Anderson, Kara L Holloway-Kew, Mark A Kotowicz, Adolfo Diez-Perez, Julie A Pasco","doi":"10.1007/s00774-024-01575-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Impact microindentation (IMI) measures bone material strength index (BMSi) in vivo. However, its ability to predict fractures is still uncertain. This study aimed to determine the association between BMSi and 10 year fracture probability, as calculated by the FRAX algorithm.</p><p><strong>Materials and methods: </strong>BMSi was measured using the OsteoProbe in 388 men (ages 40-90 yr) from the Geelong Osteoporosis Study. The probabilities for a major osteoporotic fracture (MOF) and hip fracture (HF) were calculated using the Australian FRAX tool. Hip (HF) and major osteoporotic (MOF) fracture probabilities were computed with and without the inclusion of femoral neck bone mineral density (BMD). For each participant, four 10 year probability scores were therefore generated: (i) HF-FRAXnoBMD; (ii) HF-FRAXBMD; (iii) MOF-FRAXnoBMD; (iv) MOF-FRAXBMD.</p><p><strong>Results: </strong>BMSi was negatively correlated with age (r = - 0.114, p = 0.025), no associations were detected between BMSi and femoral neck BMD (r = + 0.035, p = 0.507). BMSi was negatively correlated with HF-FRAXnoBMD (r = - 0.135, p = 0.008) and MOF-FRAXnoBMD (r = - 0.153, p = 0.003). These trends held true for HF-FRAXBMD (r = - 0.087, p = 0.094) and MOF-FRAXBMD (r = - 0.111, p = 0.034), but only the latter reached significance.</p><p><strong>Conclusion: </strong>BMSi captures the cumulative effect of clinical risk factors in the FRAX algorithm, suggesting that it could provide additional information that may be useful in predicting risk of fractures. Further studies are warranted to establish its efficacy in predicting fracture risk.</p>","PeriodicalId":15116,"journal":{"name":"Journal of Bone and Mineral Metabolism","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00774-024-01575-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Impact microindentation (IMI) measures bone material strength index (BMSi) in vivo. However, its ability to predict fractures is still uncertain. This study aimed to determine the association between BMSi and 10 year fracture probability, as calculated by the FRAX algorithm.
Materials and methods: BMSi was measured using the OsteoProbe in 388 men (ages 40-90 yr) from the Geelong Osteoporosis Study. The probabilities for a major osteoporotic fracture (MOF) and hip fracture (HF) were calculated using the Australian FRAX tool. Hip (HF) and major osteoporotic (MOF) fracture probabilities were computed with and without the inclusion of femoral neck bone mineral density (BMD). For each participant, four 10 year probability scores were therefore generated: (i) HF-FRAXnoBMD; (ii) HF-FRAXBMD; (iii) MOF-FRAXnoBMD; (iv) MOF-FRAXBMD.
Results: BMSi was negatively correlated with age (r = - 0.114, p = 0.025), no associations were detected between BMSi and femoral neck BMD (r = + 0.035, p = 0.507). BMSi was negatively correlated with HF-FRAXnoBMD (r = - 0.135, p = 0.008) and MOF-FRAXnoBMD (r = - 0.153, p = 0.003). These trends held true for HF-FRAXBMD (r = - 0.087, p = 0.094) and MOF-FRAXBMD (r = - 0.111, p = 0.034), but only the latter reached significance.
Conclusion: BMSi captures the cumulative effect of clinical risk factors in the FRAX algorithm, suggesting that it could provide additional information that may be useful in predicting risk of fractures. Further studies are warranted to establish its efficacy in predicting fracture risk.
期刊介绍:
The Journal of Bone and Mineral Metabolism (JBMM) provides an international forum for researchers and clinicians to present and discuss topics relevant to bone, teeth, and mineral metabolism, as well as joint and musculoskeletal disorders. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. Acceptance is based on the originality, significance, and validity of the material presented. The journal is aimed at researchers and clinicians dedicated to improvements in research, development, and patient-care in the fields of bone and mineral metabolism.