Anya König, Brenton L Cavanagh, Isabel Amado, Amit Kalra, Bohnejie A Ogon, Paige V Hinton, Oran D Kennedy
{"title":"A novel workflow for multi-modal imaging of musculoskeletal tissues.","authors":"Anya König, Brenton L Cavanagh, Isabel Amado, Amit Kalra, Bohnejie A Ogon, Paige V Hinton, Oran D Kennedy","doi":"10.1111/joa.14202","DOIUrl":null,"url":null,"abstract":"<p><p>According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems. As with all systemic conditions, biomedical imaging of relevant tissues plays a major role in understanding the fundamental biological processes involved in musculoskeletal health. However, the skeletal system with its relatively large proportion of dense, opaque (often mineralised) tissues can often be more challenging to image, and recently important advances have been made in imaging these complex musculoskeletal tissues. Thus, we here describe a novel workflow in which recent advanced imaging techniques have been modified and optimised for use in musculoskeletal tissues (specifically bone and cartilage). This will allow for investigations, of different phases of these tissues, at new and higher resolutions. Furthermore, the process has been designed to fit with the existing and standard processes which are typically used with these samples (i.e. μCT imaging and standard histology). The additional modalities which have been included here are second harmonic generation (SHG) imaging, tissue clearing, specifically the Passive Clear Lipid-exchanged Acrylamide-hybridised Rigid Imaging Tissue hYdrogel (CLARITY) method known as PACT, and then imaging of these tissues with confocal, multiphoton and light-sheet microscopy. This paper serves to introduce a combination of existing new methods and improvements in imaging of musculoskeletal tissues.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems. As with all systemic conditions, biomedical imaging of relevant tissues plays a major role in understanding the fundamental biological processes involved in musculoskeletal health. However, the skeletal system with its relatively large proportion of dense, opaque (often mineralised) tissues can often be more challenging to image, and recently important advances have been made in imaging these complex musculoskeletal tissues. Thus, we here describe a novel workflow in which recent advanced imaging techniques have been modified and optimised for use in musculoskeletal tissues (specifically bone and cartilage). This will allow for investigations, of different phases of these tissues, at new and higher resolutions. Furthermore, the process has been designed to fit with the existing and standard processes which are typically used with these samples (i.e. μCT imaging and standard histology). The additional modalities which have been included here are second harmonic generation (SHG) imaging, tissue clearing, specifically the Passive Clear Lipid-exchanged Acrylamide-hybridised Rigid Imaging Tissue hYdrogel (CLARITY) method known as PACT, and then imaging of these tissues with confocal, multiphoton and light-sheet microscopy. This paper serves to introduce a combination of existing new methods and improvements in imaging of musculoskeletal tissues.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.