Dorsal raphe nucleus receives retinal projections of morphologically distinct fibers in the common marmoset (Callithrix jacchus): A subunit B cholera labeling.
Nelyane N M Santana, Wellydo K M Escarião, Eryck H A Silva, Felipe P Fiuza, Expedito S Nascimento Júnior, Miriam S M O Costa, Rovena Clara Engelberth, Jeferson S Cavalcante
{"title":"Dorsal raphe nucleus receives retinal projections of morphologically distinct fibers in the common marmoset (Callithrix jacchus): A subunit B cholera labeling.","authors":"Nelyane N M Santana, Wellydo K M Escarião, Eryck H A Silva, Felipe P Fiuza, Expedito S Nascimento Júnior, Miriam S M O Costa, Rovena Clara Engelberth, Jeferson S Cavalcante","doi":"10.1111/joa.14218","DOIUrl":null,"url":null,"abstract":"<p><p>Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species. To enhance our understanding of the intrinsic organization of NIF circuits and identify retinoraphe innervation in the common marmoset (Callithrix jacchus), a diurnal non-human primate model, we employed an anterograde tract-tracing method to labeling terminal/fibers with cholera toxin subunit B (CTb) and characterized the morphology of their projections. Our analysis revealed that sparse CTb<sup>+</sup> retinal terminals are predominantly located in dorsal subdomain of the DRN, displaying two morphological types, such as simple en passant and R2-like terminals. This anatomical evidence suggests a phylogenetic stability of the retina-DRN projections in diurnal primate species, potentially serving as a significant source of photic modulation on the serotonergic profile in the DRN. However, functional significance in primate models remains uncertain. Our data provide a crucial anatomical foundation for understanding the functional aspect of this circuitry in primates, contributing to the comprehension of the phylogenetic pathways used by NIF functions, such as circadian rhythmicity.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species. To enhance our understanding of the intrinsic organization of NIF circuits and identify retinoraphe innervation in the common marmoset (Callithrix jacchus), a diurnal non-human primate model, we employed an anterograde tract-tracing method to labeling terminal/fibers with cholera toxin subunit B (CTb) and characterized the morphology of their projections. Our analysis revealed that sparse CTb+ retinal terminals are predominantly located in dorsal subdomain of the DRN, displaying two morphological types, such as simple en passant and R2-like terminals. This anatomical evidence suggests a phylogenetic stability of the retina-DRN projections in diurnal primate species, potentially serving as a significant source of photic modulation on the serotonergic profile in the DRN. However, functional significance in primate models remains uncertain. Our data provide a crucial anatomical foundation for understanding the functional aspect of this circuitry in primates, contributing to the comprehension of the phylogenetic pathways used by NIF functions, such as circadian rhythmicity.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.