{"title":"24-Dehydrocholesterol Reductase Facilitates Cisplatin Resistance of Non-small Cell Lung Cancer via Repressing Reactive Oxygen Species/Ferroptosis Pathway.","authors":"Ce Qin, Jun Yuan, Rui Zhang, Li Liu, Yue-Song Ban","doi":"10.5812/ijpr-150017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-small-cell lung cancer (NSCLC) remains a deadly malignancy worldwide. Resistance to cisplatin (DDP) is a significant obstacle that limits the therapeutic efficacy in NSCLC patients.</p><p><strong>Objectives: </strong>This study investigated the role and mechanism of 24-dehydrocholesterol reductase (DHCR24) in DDP resistance in NSCLC cells.</p><p><strong>Methods: </strong>24-dehydrocholesterol reductase levels, ferroptosis-related molecules, and proteins involved in the PI3K/AKT/GSK3β pathway were measured. The growth capacity of the cells was evaluated, and ferroptosis was assessed by measuring MDA, GSH, Fe<sup>2+</sup>, and ROS levels. The impact of DHCR24 on NSCLC DDP resistance was analyzed using a tumor xenograft assay in vivo. Ki-67 and DHCR24 expression in tumors were evaluated through immunohistochemical staining.</p><p><strong>Results: </strong>24-dehydrocholesterol reductase expression was elevated in DDP-resistant cells, indicating a poorer prognosis for NSCLC patients. Down-regulation of DHCR24 inhibited the growth of DDP-resistant cells and induced ferroptosis. Inhibition of DHCR24 led to the inactivation of the PI3K/AKT/GSK3β pathway and subsequent induction of ferroptosis. Inhibition of ferroptosis or activation of the PI3K/AKT/GSK3β pathway counteracted the increased DDP sensitivity induced by DHCR24 knockdown in NSCLC cells. Additionally, DHCR24 deficiency improved NSCLC DDP resistance in vivo.</p><p><strong>Conclusions: </strong>24-dehydrocholesterol reductase contributes to DDP resistance in NSCLC cells by suppressing ferroptosis through the activation of the PI3K/AKT/GSK3β pathway.</p>","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"23 1","pages":"e150017"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/ijpr-150017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Non-small-cell lung cancer (NSCLC) remains a deadly malignancy worldwide. Resistance to cisplatin (DDP) is a significant obstacle that limits the therapeutic efficacy in NSCLC patients.
Objectives: This study investigated the role and mechanism of 24-dehydrocholesterol reductase (DHCR24) in DDP resistance in NSCLC cells.
Methods: 24-dehydrocholesterol reductase levels, ferroptosis-related molecules, and proteins involved in the PI3K/AKT/GSK3β pathway were measured. The growth capacity of the cells was evaluated, and ferroptosis was assessed by measuring MDA, GSH, Fe2+, and ROS levels. The impact of DHCR24 on NSCLC DDP resistance was analyzed using a tumor xenograft assay in vivo. Ki-67 and DHCR24 expression in tumors were evaluated through immunohistochemical staining.
Results: 24-dehydrocholesterol reductase expression was elevated in DDP-resistant cells, indicating a poorer prognosis for NSCLC patients. Down-regulation of DHCR24 inhibited the growth of DDP-resistant cells and induced ferroptosis. Inhibition of DHCR24 led to the inactivation of the PI3K/AKT/GSK3β pathway and subsequent induction of ferroptosis. Inhibition of ferroptosis or activation of the PI3K/AKT/GSK3β pathway counteracted the increased DDP sensitivity induced by DHCR24 knockdown in NSCLC cells. Additionally, DHCR24 deficiency improved NSCLC DDP resistance in vivo.
Conclusions: 24-dehydrocholesterol reductase contributes to DDP resistance in NSCLC cells by suppressing ferroptosis through the activation of the PI3K/AKT/GSK3β pathway.
期刊介绍:
The Iranian Journal of Pharmaceutical Research (IJPR) is a peer-reviewed multi-disciplinary pharmaceutical publication, scheduled to appear quarterly and serve as a means for scientific information exchange in the international pharmaceutical forum. Specific scientific topics of interest to the journal include, but are not limited to: pharmaceutics, industrial pharmacy, pharmacognosy, toxicology, medicinal chemistry, novel analytical methods for drug characterization, computational and modeling approaches to drug design, bio-medical experience, clinical investigation, rational drug prescribing, pharmacoeconomics, biotechnology, nanotechnology, biopharmaceutics and physical pharmacy.