A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Asmaa M Youssef, Ahmed M Moustafa, Motoharu Hamada, Mayumi Sugiura-Ogasawara, Hisashi Oishi
{"title":"A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.","authors":"Asmaa M Youssef, Ahmed M Moustafa, Motoharu Hamada, Mayumi Sugiura-Ogasawara, Hisashi Oishi","doi":"10.1093/jb/mvaf006","DOIUrl":null,"url":null,"abstract":"<p><p>The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells. The method combines mechanical dissociation, enzymatic digestion, and immunomagnetic separation. The isolated glandular epithelial cells were maintained in culture and exhibited proliferation in response to steroid hormones. Furthermore, estrogen responsiveness was abrogated by Estrogen Receptor 1 (Esr1) knockdown mediated by siRNA. Here, we present an efficient and reproducible method for isolating uterine glandular epithelial cells with high purity, enabling their in vitro maintenance, hormone responsiveness assessment, and functional gene knockdown. These findings establish a robust platform for advancing our understanding of uterine gland biology, facilitating detailed investigations into molecular mechanisms underlying glandular function and their critical roles in establishing pregnancy success. Future research could explore the contribution of these isolated cells to endometrial receptivity and embryo implantation.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells. The method combines mechanical dissociation, enzymatic digestion, and immunomagnetic separation. The isolated glandular epithelial cells were maintained in culture and exhibited proliferation in response to steroid hormones. Furthermore, estrogen responsiveness was abrogated by Estrogen Receptor 1 (Esr1) knockdown mediated by siRNA. Here, we present an efficient and reproducible method for isolating uterine glandular epithelial cells with high purity, enabling their in vitro maintenance, hormone responsiveness assessment, and functional gene knockdown. These findings establish a robust platform for advancing our understanding of uterine gland biology, facilitating detailed investigations into molecular mechanisms underlying glandular function and their critical roles in establishing pregnancy success. Future research could explore the contribution of these isolated cells to endometrial receptivity and embryo implantation.

一种高纯度分离小鼠子宫腺上皮细胞的改进方法。
子宫内膜由腔上皮、腺上皮和间质细胞组成,其中子宫腺在哺乳动物妊娠成功中起着关键作用。子宫腺分泌调节胚胎发育和着床的必需因子;然而,他们的细胞生物学仍然知之甚少。本研究提出了一种高纯度分离三种不同子宫内膜细胞类型的精制方法,特别强调腺上皮细胞。该方法结合了机械解离、酶解和免疫磁分离。分离的腺上皮细胞在培养中保持不变,并表现出对类固醇激素的增殖反应。此外,siRNA介导的雌激素受体1 (estrogen Receptor 1, Esr1)敲低可消除雌激素反应性。在这里,我们提出了一种高效、可重复的方法来分离高纯度的子宫腺上皮细胞,使其体外维持、激素反应性评估和功能基因敲除成为可能。这些发现为推进我们对子宫腺生物学的理解建立了一个强大的平台,促进了对腺体功能的分子机制及其在建立妊娠成功中的关键作用的详细研究。未来的研究可以探讨这些分离细胞对子宫内膜容受性和胚胎着床的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信