{"title":"Edaravone Mitigates Hippocampal Neuronal Death and Cognitive Dysfunction by Upregulating BDNF Expression in Neonatal Hypoxic–Ischemic Rats","authors":"Rui Zhang, Yongkai Yang, Yijun Lin","doi":"10.1002/jdn.10413","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Neonatal hypoxic–ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic–ischemic insult. To examine the role of BDNF, a separate group of rats received intrahippocampal injections of a lentiviral vector for BDNF knockdown prior to the induction of HIE and subsequent EDA treatment. Neuronal survival and apoptosis in the hippocampal region were assessed by immunofluorescence and TUNEL staining, respectively. BDNF expression levels in the hippocampus were analysed using enzyme-linked immunosorbent assay (ELISA). Cognitive function was evaluated using the Morris water maze (MWM) and Y maze tests. Results demonstrated that EDA significantly reduced hippocampal neuronal apoptosis and death, increased neuronal survival, and enhanced BDNF expression compared to the control group. However, the therapeutic effects of EDA were mitigated in the BDNF knockdown group, indicating a crucial role of BDNF in mediating the neuroprotective effects of EDA. Behavioural testing confirmed that EDA treatment significantly improved spatial learning and memory abilities in HIE rats, but these improvements were not observed in rats with BDNF knockdown. In conclusion, our study suggests that EDA treatment mitigates hippocampal neuronal death and improves cognitive dysfunction in HIE rats primarily by upregulating BDNF expression. These findings provide experimental support for the potential application of EDA in the treatment of HIE and highlight the essential role of BDNF in neuroprotection and cognitive recovery post-HIE.</p>\n </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"85 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10413","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neonatal hypoxic–ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic–ischemic insult. To examine the role of BDNF, a separate group of rats received intrahippocampal injections of a lentiviral vector for BDNF knockdown prior to the induction of HIE and subsequent EDA treatment. Neuronal survival and apoptosis in the hippocampal region were assessed by immunofluorescence and TUNEL staining, respectively. BDNF expression levels in the hippocampus were analysed using enzyme-linked immunosorbent assay (ELISA). Cognitive function was evaluated using the Morris water maze (MWM) and Y maze tests. Results demonstrated that EDA significantly reduced hippocampal neuronal apoptosis and death, increased neuronal survival, and enhanced BDNF expression compared to the control group. However, the therapeutic effects of EDA were mitigated in the BDNF knockdown group, indicating a crucial role of BDNF in mediating the neuroprotective effects of EDA. Behavioural testing confirmed that EDA treatment significantly improved spatial learning and memory abilities in HIE rats, but these improvements were not observed in rats with BDNF knockdown. In conclusion, our study suggests that EDA treatment mitigates hippocampal neuronal death and improves cognitive dysfunction in HIE rats primarily by upregulating BDNF expression. These findings provide experimental support for the potential application of EDA in the treatment of HIE and highlight the essential role of BDNF in neuroprotection and cognitive recovery post-HIE.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.