{"title":"Tail Tales: How Ecological Context Mediates Signal Effectiveness in a Lizard.","authors":"Xue Bian, Wei Zhao, Yin Qi, Richard Peters","doi":"10.1111/1749-4877.12943","DOIUrl":null,"url":null,"abstract":"<p><p>Animal signals are complex, comprising multiple components influenced by ecological factors and viewing perspectives that together impact their overall effectiveness. Our study explores how these factors affect the efficacy of multi-component signals in the Qinghai toad-headed agama, Phrynocephalus vlangalii. Using 3D animations, we simulated natural environments to evaluate how tail coiling and tail lashing-two primary tail displays-vary in effectiveness from both conspecific and predator perspectives under different ecological conditions. Baseline comparisons showed no significant difference in effectiveness between tail coiling and tail lashing without environmental constraints, though side-on tail coiling was consistently more effective than front-on displays. When noise proximity was introduced, tail lashing was more effective when the noise source was nearby, but this advantage diminished with distance. Conversely, tail coiling maintained consistent effectiveness across varying noise proximities, especially from a side-on view. In complex habitats with diverse plant species and varying wind conditions, tail lashing proved more effective, particularly from a front-on perspective, while tail coiling excelled from a side-on view. From a predator's perspective, tail lashing was slightly more effective under low wind conditions at close distances, though its visibility decreased with higher wind speeds. These findings highlight the adaptive significance of multi-component signals and the critical role of signal orientation in enhancing communication. This research offers insights into the evolutionary pressures shaping animal communication strategies.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12943","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal signals are complex, comprising multiple components influenced by ecological factors and viewing perspectives that together impact their overall effectiveness. Our study explores how these factors affect the efficacy of multi-component signals in the Qinghai toad-headed agama, Phrynocephalus vlangalii. Using 3D animations, we simulated natural environments to evaluate how tail coiling and tail lashing-two primary tail displays-vary in effectiveness from both conspecific and predator perspectives under different ecological conditions. Baseline comparisons showed no significant difference in effectiveness between tail coiling and tail lashing without environmental constraints, though side-on tail coiling was consistently more effective than front-on displays. When noise proximity was introduced, tail lashing was more effective when the noise source was nearby, but this advantage diminished with distance. Conversely, tail coiling maintained consistent effectiveness across varying noise proximities, especially from a side-on view. In complex habitats with diverse plant species and varying wind conditions, tail lashing proved more effective, particularly from a front-on perspective, while tail coiling excelled from a side-on view. From a predator's perspective, tail lashing was slightly more effective under low wind conditions at close distances, though its visibility decreased with higher wind speeds. These findings highlight the adaptive significance of multi-component signals and the critical role of signal orientation in enhancing communication. This research offers insights into the evolutionary pressures shaping animal communication strategies.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations