{"title":"<i>Hirsutella sinensis</i> Fungus Promotes CD8<sup>+</sup> T Cell-Mediated Anti-Tumor Immunity by Affecting Tumor-Associated Macrophages-Derived CCRL2.","authors":"Kaixiang Zhao, Yan Ma, Jing Luo, Yanhui Xu, Qiyang Shou, Hao Jiang, Xinhai Zhu","doi":"10.1080/08820139.2025.2450246","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong><i>Hirsutella sinensis</i> fungus (HSF)is an artificial substitute for <i>Cordyceps sinensis</i> and has shown promising therapeutic effects in various diseases including cancer. Previous studies have demonstrated that HSF can affect macrophage polarization and activate systemic immune response. In our preliminary experiments, we validated that HSF inhibited the proliferation of lung cancer (LC) cells, but the underlying mechanism is elusive. We intended to explore the mechanism of HSF in promoting anti-tumor immunity.</p><p><strong>Methods: </strong><i>In vivo</i> experiments were performed to confirm inhibitory effect of HSF on LC growth, and sequencing results revealed abnormal expression of CCRL2. Knockdown and overexpression of CCRL2 were conducted to investigate its effect on macrophage polarization, and co-culture with T cells was to assay the impact of HSF+CCRL2 on CD8<sup>+</sup> T cell activation by flow cytometry.</p><p><strong>Results: </strong>Overexpression of CCRL2 promoted macrophage polarization toward M1 and activated the proliferation and effector function of CD8<sup>+</sup> T cells. HSF promoted CCRL2 expression and affected M1 polarization via CCRL2, which in turn affected CD8<sup>+</sup> T cell-mediated anti-tumor immunity.</p><p><strong>Discussion: </strong>Our study demonstrated that HSF promoted macrophage M1 polarization and activated CD8<sup>+</sup> T cells via CCRL2, thereby inhibiting the progression of LC.</p>","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":" ","pages":"1-16"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2025.2450246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Hirsutella sinensis fungus (HSF)is an artificial substitute for Cordyceps sinensis and has shown promising therapeutic effects in various diseases including cancer. Previous studies have demonstrated that HSF can affect macrophage polarization and activate systemic immune response. In our preliminary experiments, we validated that HSF inhibited the proliferation of lung cancer (LC) cells, but the underlying mechanism is elusive. We intended to explore the mechanism of HSF in promoting anti-tumor immunity.
Methods: In vivo experiments were performed to confirm inhibitory effect of HSF on LC growth, and sequencing results revealed abnormal expression of CCRL2. Knockdown and overexpression of CCRL2 were conducted to investigate its effect on macrophage polarization, and co-culture with T cells was to assay the impact of HSF+CCRL2 on CD8+ T cell activation by flow cytometry.
Results: Overexpression of CCRL2 promoted macrophage polarization toward M1 and activated the proliferation and effector function of CD8+ T cells. HSF promoted CCRL2 expression and affected M1 polarization via CCRL2, which in turn affected CD8+ T cell-mediated anti-tumor immunity.
Discussion: Our study demonstrated that HSF promoted macrophage M1 polarization and activated CD8+ T cells via CCRL2, thereby inhibiting the progression of LC.
期刊介绍:
Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.