Dual neutralization of TGF-β and IL-21 regulates Th17/Treg balance by suppressing inflammatory signalling in the splenic lymphocytes of Staphylococcus aureus infection-induced septic arthritic mice.
{"title":"Dual neutralization of TGF-β and IL-21 regulates Th17/Treg balance by suppressing inflammatory signalling in the splenic lymphocytes of Staphylococcus aureus infection-induced septic arthritic mice.","authors":"Rochana Pramanik, Sreya Chattopadhyay, Biswadev Bishayi","doi":"10.1007/s12026-024-09586-2","DOIUrl":null,"url":null,"abstract":"<p><p>Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4<sup>+</sup> T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis. A high Th17 could lead to autoimmunity, whereas an increase in Tregs indicates immunosuppression. Depending on the external cytokine milieu, naïve CD4<sup>+</sup> T cells transform into either Th17 or Treg cell lineage. TGF-β in the presence of IL-21 produces Th17 cells and drives the inflammatory cascade of reactions. We studied the effects of in vivo neutralization of TGF-β and IL-21 in septic arthritic mice to control arthritic inflammation, which has not been studied before. The arthritic index showed maximum severity in the SA group which substantially reduced in the Ab-treated groups. Flow cytometric analyses of peripheral blood collected from mice at 9DPI revealed the highest Th17/Treg ratio in the SA group but least in the combined-antibody-treated group. TGF-β1 and IL-21 cytokine production from serum, spleen, and synovial tissue homogenates was significantly reduced in the dual Ab-treated group than in the untreated SA group. From the Western blot analyses obtained from splenic lymphocytes at 9 DPI, we elucidated the possible underlying mechanism of interplay in downstream signalling involving the interaction between different STAT proteins and SOCS, NF-κB, RANKL, mTOR, iNOS, and COX-2 in regulating inflammation and osteoclastogenesis. On endogenous blockade with TGF-β and IL-21, the Th17/Treg ratio and resultant arthritic inflammation in SA were found to be reduced. Therefore, maintaining the Th17/Treg balance is critical to eradicate infection as well as suppress excessive inflammation and neutralization of TGF-β and IL-21 could provide a novel therapeutic strategy to treat staphylococcal SA.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"38"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09586-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4+ T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis. A high Th17 could lead to autoimmunity, whereas an increase in Tregs indicates immunosuppression. Depending on the external cytokine milieu, naïve CD4+ T cells transform into either Th17 or Treg cell lineage. TGF-β in the presence of IL-21 produces Th17 cells and drives the inflammatory cascade of reactions. We studied the effects of in vivo neutralization of TGF-β and IL-21 in septic arthritic mice to control arthritic inflammation, which has not been studied before. The arthritic index showed maximum severity in the SA group which substantially reduced in the Ab-treated groups. Flow cytometric analyses of peripheral blood collected from mice at 9DPI revealed the highest Th17/Treg ratio in the SA group but least in the combined-antibody-treated group. TGF-β1 and IL-21 cytokine production from serum, spleen, and synovial tissue homogenates was significantly reduced in the dual Ab-treated group than in the untreated SA group. From the Western blot analyses obtained from splenic lymphocytes at 9 DPI, we elucidated the possible underlying mechanism of interplay in downstream signalling involving the interaction between different STAT proteins and SOCS, NF-κB, RANKL, mTOR, iNOS, and COX-2 in regulating inflammation and osteoclastogenesis. On endogenous blockade with TGF-β and IL-21, the Th17/Treg ratio and resultant arthritic inflammation in SA were found to be reduced. Therefore, maintaining the Th17/Treg balance is critical to eradicate infection as well as suppress excessive inflammation and neutralization of TGF-β and IL-21 could provide a novel therapeutic strategy to treat staphylococcal SA.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.