Elasticity of trachea in the silkworm: A role of gene BmMuc91C.

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Yifei Chen, Haonan Dong, Chunxia Xiao, Qinglang Wang, Jing Gong, Yong Hou
{"title":"Elasticity of trachea in the silkworm: A role of gene BmMuc91C.","authors":"Yifei Chen, Haonan Dong, Chunxia Xiao, Qinglang Wang, Jing Gong, Yong Hou","doi":"10.1111/1744-7917.13492","DOIUrl":null,"url":null,"abstract":"<p><p>Respiration is a vital process essential for organism survival, with most terrestrial insects relying on a sophisticated tubular tracheal network. In the current study, a gene with repetitive sequence was identified within the silkworm genome. Designated as BmMuc91C, it contains a dozen repeated motifs \"PSSSYGAPX\" and \"GGYSSGGX\" in its sequence. BmMuc91C exhibits specific expression in the tracheal system of silkworm larvae, with significantly higher expression levels during the molting stage. Overexpression of BmMuc91C in individual silkworms resulted in a marked increase in tracheal diameter, particularly during the molting stage. Immunofluorescence staining using a BmMuc91C antibody revealed a noticeable thickening of the apical extracellular matrix in the trachea. Tensile testing confirmed a considerable enhancement in tracheal elasticity. Additionally, a BmMuc91C mutation strain of silkworms was generated using the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 system. Although no significant differences were observed in the growth, development, and molting of BmMuc91C mutant silkworms, mechanical tests demonstrated a decrease in tracheal elasticity. Transcriptomic techniques revealed that a significant number of cuticular and chitin-binding proteins were among the differentially expressed genes between mutant and wild-type silkworms. Furthermore, the recombined BmMuc91C protein was successfully expressed using the Escherichia coli system. Cross-linking experiments with horseradish peroxidase demonstrated the formation of macromolecular complexes of BmMuc91C, which exhibited spontaneous luminescent properties under ultraviolet light. This research sheds light on the role of elastic proteins in insect tracheae and provides valuable insights for the development of elastic biomaterials.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13492","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiration is a vital process essential for organism survival, with most terrestrial insects relying on a sophisticated tubular tracheal network. In the current study, a gene with repetitive sequence was identified within the silkworm genome. Designated as BmMuc91C, it contains a dozen repeated motifs "PSSSYGAPX" and "GGYSSGGX" in its sequence. BmMuc91C exhibits specific expression in the tracheal system of silkworm larvae, with significantly higher expression levels during the molting stage. Overexpression of BmMuc91C in individual silkworms resulted in a marked increase in tracheal diameter, particularly during the molting stage. Immunofluorescence staining using a BmMuc91C antibody revealed a noticeable thickening of the apical extracellular matrix in the trachea. Tensile testing confirmed a considerable enhancement in tracheal elasticity. Additionally, a BmMuc91C mutation strain of silkworms was generated using the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 system. Although no significant differences were observed in the growth, development, and molting of BmMuc91C mutant silkworms, mechanical tests demonstrated a decrease in tracheal elasticity. Transcriptomic techniques revealed that a significant number of cuticular and chitin-binding proteins were among the differentially expressed genes between mutant and wild-type silkworms. Furthermore, the recombined BmMuc91C protein was successfully expressed using the Escherichia coli system. Cross-linking experiments with horseradish peroxidase demonstrated the formation of macromolecular complexes of BmMuc91C, which exhibited spontaneous luminescent properties under ultraviolet light. This research sheds light on the role of elastic proteins in insect tracheae and provides valuable insights for the development of elastic biomaterials.

家蚕气管弹性:BmMuc91C基因的作用。
呼吸是生物体生存的重要过程,大多数陆生昆虫依赖于复杂的管状气管网络。本研究在家蚕基因组中发现了一个具有重复序列的基因。该基因被命名为BmMuc91C,在其序列中包含12个重复基序“PSSSYGAPX”和“GGYSSGGX”。BmMuc91C在家蚕幼虫气管系统中有特异性表达,在蜕皮期表达量显著增高。BmMuc91C在家蚕个体中过表达,导致其气管直径显著增加,尤其是在蜕皮期。BmMuc91C抗体免疫荧光染色显示气管顶端细胞外基质明显增厚。拉伸试验证实气管弹性明显增强。此外,利用聚集规则间隔短回文重复序列(CRISPR) / CRISPR相关核酸酶9系统,生成了家蚕BmMuc91C突变株。虽然BmMuc91C突变家蚕在生长、发育和蜕皮方面没有观察到显著差异,但机械试验表明气管弹性下降。转录组学技术表明,表皮蛋白和几丁质结合蛋白在突变型和野生型家蚕之间存在显著的差异表达基因。利用大肠杆菌系统成功表达了重组的BmMuc91C蛋白。与辣根过氧化物酶的交联实验表明BmMuc91C形成了大分子配合物,并在紫外光下表现出自发发光的特性。该研究揭示了弹性蛋白在昆虫气管中的作用,为弹性生物材料的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信