Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-01-22 DOI:10.1080/19490976.2025.2452229
Yuling Lin, Jingyu Wang, Fan Bu, Ruyi Zhang, Junhui Wang, Yubing Wang, Mei Huang, Yiyi Huang, Lei Zheng, Qian Wang, Xiumei Hu
{"title":"Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis.","authors":"Yuling Lin, Jingyu Wang, Fan Bu, Ruyi Zhang, Junhui Wang, Yubing Wang, Mei Huang, Yiyi Huang, Lei Zheng, Qian Wang, Xiumei Hu","doi":"10.1080/19490976.2025.2452229","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2452229"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2452229","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.

细菌细胞外囊泡在动脉粥样硬化的发生、发展和治疗中的作用。
动脉粥样硬化是心脑血管疾病的主要原因。然而,目前的抗动脉粥样硬化药物显示出相互矛盾的治疗结果,从而刺激了对新的有效治疗方法的研究。最近的研究表明口腔和胃肠道微生物群在动脉粥样硬化中起着至关重要的作用。虽然肠道微生物代谢产物,如胆碱衍生物,已经被广泛研究和回顾,但新出现的证据表明,细菌细胞外囊泡(BEVs),一种由细菌分泌的膜源性脂质双分子层,在这一过程中也起着重要作用。然而,bev在宿主-微生物群相互作用中的作用仍然没有得到充分的探索。本文旨在阐明bev沿肠-心轴介导的复杂通讯。在这篇综述中,我们总结了目前关于bev的知识,特别关注病原体来源的bev如何促进动脉粥样硬化,以及来自肠道共生体和益生菌的bev如何减缓其进展。我们还探讨了工程bev在预防和治疗动脉粥样硬化方面的潜力和挑战。最后,我们讨论了bev在动脉粥样硬化诊断和治疗中的益处和挑战,并提出了解决这些问题的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信