Héctor Torrado, Dareon Rios, Karim Primov, David R Burdick, Bastian Bentlage, Sarah Lemer, David Combosch
{"title":"Evolutionary Genomics of Two Co-occurring Congeneric Fore Reef Coral Species on Guam (Mariana Islands).","authors":"Héctor Torrado, Dareon Rios, Karim Primov, David R Burdick, Bastian Bentlage, Sarah Lemer, David Combosch","doi":"10.1093/gbe/evae278","DOIUrl":null,"url":null,"abstract":"<p><p>Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A. surculosa sensu Randall & Myers (1983) and A. cf. verweyi Veron & Wallace, 1984 around Guam, using genome-wide sequence data (ddRAD). We further contrast our findings with the results of a recent study on back reef A. cf. pulchra (Brook, 1891) to assess the impact of habitat, colony morphology, and phylogenetic relatedness on these basic population genetic characteristics and generate testable hypotheses for future studies. Both target species were found to have small effective population sizes, low levels of genetic diversity, and minimal population structure around Guam. Nonetheless, A. cf. verweyi had significantly higher levels of genetic diversity, some population structure as well as more clones, close relatives and putative loci under selection. Comparisons with A. cf. pulchra indicate a potentially significant impact by habitat on population structure and genetic diversity while colony morphology seems to significantly impact clonality. This study revealed significant differences in the basic population genetic makeup of two sympatric Acropora species on Guam. Our results suggest that colony morphology and habitat/ecology may have a significant impact on the population genetic makeup in reef corals, which could offer valuable insights for future management decisions in the absence of genetic data.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"17 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae278","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A. surculosa sensu Randall & Myers (1983) and A. cf. verweyi Veron & Wallace, 1984 around Guam, using genome-wide sequence data (ddRAD). We further contrast our findings with the results of a recent study on back reef A. cf. pulchra (Brook, 1891) to assess the impact of habitat, colony morphology, and phylogenetic relatedness on these basic population genetic characteristics and generate testable hypotheses for future studies. Both target species were found to have small effective population sizes, low levels of genetic diversity, and minimal population structure around Guam. Nonetheless, A. cf. verweyi had significantly higher levels of genetic diversity, some population structure as well as more clones, close relatives and putative loci under selection. Comparisons with A. cf. pulchra indicate a potentially significant impact by habitat on population structure and genetic diversity while colony morphology seems to significantly impact clonality. This study revealed significant differences in the basic population genetic makeup of two sympatric Acropora species on Guam. Our results suggest that colony morphology and habitat/ecology may have a significant impact on the population genetic makeup in reef corals, which could offer valuable insights for future management decisions in the absence of genetic data.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.