{"title":"Endoscopic surgery affects the gut microbiota and its metabolism in breast cancer patients.","authors":"Jingtai Li, Fangfang Gao, Runwei Li, Zhilin Chen, Guoping Chen, Pingming Fan, Guankui Du","doi":"10.3389/fmicb.2024.1481582","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the advantages of endoscopic surgery in reducing trauma and enhancing recovery for breast cancer patients, its impact on gut microbiota, which is crucial for health and estrogen metabolism, remains unclear. Further investigation is necessary to fully understand this impact and its implications.</p><p><strong>Materials and methods: </strong>Between June and December 2022, fecal samples were collected from 20 patients who underwent endoscopic surgery. The gut microbiota composition was determined using 16S rRNA sequencing, while the metabolites were analyzed through liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics and statistical analyses were employed to identify significant alterations in microbial taxa abundance and to assess intergroup differences. These analyses included t-tests for pairwise comparisons, one-way ANOVA for multiple group comparisons, and chi-square tests for categorical data analysis.</p><p><strong>Results: </strong>Endoscopic surgery in breast cancer patients subtly changed gut microbiota diversity and composition. Post-surgery, there was a reduction in Lachnospiraceae, Monoglobaceae and Firmicutes to Bacteroides ratios. Shifts in metabolites were also observed, the changed metabolites impacted pathways such as primary bile biosynthesis and Ascorbate and aldarate metabolism, with PE(PGD1/18:1(9Z)) identified as a key differential metabolite that increased post-surgery. Azasetron, tyramine glucuronide, DL-DOPA, phthalide, acetophenazine, aciclovir, creatinine bicarbonate, and 4-oxo-L-proline being associated with distinct bacterial taxa.</p><p><strong>Conclusion: </strong>Breast cancer patients undergoing endoscopic surgery experience a shift in their gut microbiota and metabolic profiles. Therefore, postoperative management, with a particular focus on the adjustment of the gut microbiota, is crucial for enhancing patient recovery and health outcomes.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1481582"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1481582","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite the advantages of endoscopic surgery in reducing trauma and enhancing recovery for breast cancer patients, its impact on gut microbiota, which is crucial for health and estrogen metabolism, remains unclear. Further investigation is necessary to fully understand this impact and its implications.
Materials and methods: Between June and December 2022, fecal samples were collected from 20 patients who underwent endoscopic surgery. The gut microbiota composition was determined using 16S rRNA sequencing, while the metabolites were analyzed through liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics and statistical analyses were employed to identify significant alterations in microbial taxa abundance and to assess intergroup differences. These analyses included t-tests for pairwise comparisons, one-way ANOVA for multiple group comparisons, and chi-square tests for categorical data analysis.
Results: Endoscopic surgery in breast cancer patients subtly changed gut microbiota diversity and composition. Post-surgery, there was a reduction in Lachnospiraceae, Monoglobaceae and Firmicutes to Bacteroides ratios. Shifts in metabolites were also observed, the changed metabolites impacted pathways such as primary bile biosynthesis and Ascorbate and aldarate metabolism, with PE(PGD1/18:1(9Z)) identified as a key differential metabolite that increased post-surgery. Azasetron, tyramine glucuronide, DL-DOPA, phthalide, acetophenazine, aciclovir, creatinine bicarbonate, and 4-oxo-L-proline being associated with distinct bacterial taxa.
Conclusion: Breast cancer patients undergoing endoscopic surgery experience a shift in their gut microbiota and metabolic profiles. Therefore, postoperative management, with a particular focus on the adjustment of the gut microbiota, is crucial for enhancing patient recovery and health outcomes.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.