Comparative analysis of anticoagulant influence on PMI estimation based on porcine blood metabolomics profile measured using GC-MS.

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frontiers in Molecular Biosciences Pub Date : 2025-01-07 eCollection Date: 2024-01-01 DOI:10.3389/fmolb.2024.1400622
Patrycja Mojsak, Paulina Samczuk, Paulina Klimaszewska, Michal Burdukiewicz, Jaroslaw Chilimoniuk, Krystyna Grzesiak, Karolina Pietrowska, Justyna Ciborowska, Anna Niemcunowicz-Janica, Adam Kretowski, Michal Ciborowski, Michal Szeremeta
{"title":"Comparative analysis of anticoagulant influence on PMI estimation based on porcine blood metabolomics profile measured using GC-MS.","authors":"Patrycja Mojsak, Paulina Samczuk, Paulina Klimaszewska, Michal Burdukiewicz, Jaroslaw Chilimoniuk, Krystyna Grzesiak, Karolina Pietrowska, Justyna Ciborowska, Anna Niemcunowicz-Janica, Adam Kretowski, Michal Ciborowski, Michal Szeremeta","doi":"10.3389/fmolb.2024.1400622","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate post-mortem interval (PMI) estimation is essential in forensic investigations. Although various methods for PMI determination have been developed, only an approximate estimation is still achievable, and an accurate PMI indication is still challenging. Therefore, in this study, we employed gas chromatography-mass spectrometry (GC-MS)-based metabolomics to assess post-mortem changes in porcine blood samples collected with and without the addition of anticoagulant (EDTA). Our study aimed to identify metabolites dependent on the EDTA addition and time (taking into account the biodiversity of the studied organism) and those that are time-dependent but resistant to the addition of an anticoagulant.</p><p><strong>Methods: </strong>The experiment was performed on blood samples collected from 16 animals (domestic pig, breed: Polish Large White), 8 with and 8 without EDTA addition. The moment of death (time 0) and 15 additional time points (from 3 to 168 h after death) were selected to examine changes in metabolites' levels in specific time intervals. We employed linear mixed models to study the relationship between metabolite intensities, time and presence of EDTA while accounting for the effect of individual pigs.</p><p><strong>Results and discussion: </strong>We confirmed that the intensity of 16 metabolites (mainly amino acids) significantly depends on PMI and the presence of EDTA. However, the intensity of the ideal biomarker(s) for PMI estimation should be determined only by the time after death and not by external factors such as the presence of the anticoagulant agent. Thus, we identified 41 metabolites with time-dependent intensities that were not susceptible to EDTA presence. Finally, we assessed the performance of these metabolites in a PMI predictive model. Citraconic acid yielded one of the lowest errors in general PMI estimation (32.82 h). Moreover, similar errors were observed for samples with and without EDTA (33.32 h and 32.34 h, respectively). Although the small sample size and information leak in predictive modelling prevent drawing definite conclusions, citraconic acid shows potential as a robust PMI estimator.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1400622"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1400622","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Accurate post-mortem interval (PMI) estimation is essential in forensic investigations. Although various methods for PMI determination have been developed, only an approximate estimation is still achievable, and an accurate PMI indication is still challenging. Therefore, in this study, we employed gas chromatography-mass spectrometry (GC-MS)-based metabolomics to assess post-mortem changes in porcine blood samples collected with and without the addition of anticoagulant (EDTA). Our study aimed to identify metabolites dependent on the EDTA addition and time (taking into account the biodiversity of the studied organism) and those that are time-dependent but resistant to the addition of an anticoagulant.

Methods: The experiment was performed on blood samples collected from 16 animals (domestic pig, breed: Polish Large White), 8 with and 8 without EDTA addition. The moment of death (time 0) and 15 additional time points (from 3 to 168 h after death) were selected to examine changes in metabolites' levels in specific time intervals. We employed linear mixed models to study the relationship between metabolite intensities, time and presence of EDTA while accounting for the effect of individual pigs.

Results and discussion: We confirmed that the intensity of 16 metabolites (mainly amino acids) significantly depends on PMI and the presence of EDTA. However, the intensity of the ideal biomarker(s) for PMI estimation should be determined only by the time after death and not by external factors such as the presence of the anticoagulant agent. Thus, we identified 41 metabolites with time-dependent intensities that were not susceptible to EDTA presence. Finally, we assessed the performance of these metabolites in a PMI predictive model. Citraconic acid yielded one of the lowest errors in general PMI estimation (32.82 h). Moreover, similar errors were observed for samples with and without EDTA (33.32 h and 32.34 h, respectively). Although the small sample size and information leak in predictive modelling prevent drawing definite conclusions, citraconic acid shows potential as a robust PMI estimator.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信