{"title":"Enhancing efficiency and stability in perovskite solar cells: innovations in self-assembled monolayers.","authors":"Jingshu Tian, Haichang Zhang","doi":"10.3389/fchem.2024.1519166","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination. This review examines recent advancements in SAMs for PVSCs, focusing on three key areas: anchoring groups and interface engineering, electronic structure modulation as well as band alignment, and stability optimization. We emphasize the role of anchoring groups in reducing defects and improving crystallinity, alongside the ability of SAMs to fine-tune energy levels for more effective hole extraction. Additionally, co-adsorbed SAM strategies was discussed which can enhance the durability of PVSCs against thermal and moisture degradation. Overall, SAMs present a promising avenue for addressing both efficiency and stability challenges in PVSCs, paving the way toward commercial viability. Future research should prioritize long-term environmental durability and the scaling up of SAM applications for industrial implementation.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1519166"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1519166","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination. This review examines recent advancements in SAMs for PVSCs, focusing on three key areas: anchoring groups and interface engineering, electronic structure modulation as well as band alignment, and stability optimization. We emphasize the role of anchoring groups in reducing defects and improving crystallinity, alongside the ability of SAMs to fine-tune energy levels for more effective hole extraction. Additionally, co-adsorbed SAM strategies was discussed which can enhance the durability of PVSCs against thermal and moisture degradation. Overall, SAMs present a promising avenue for addressing both efficiency and stability challenges in PVSCs, paving the way toward commercial viability. Future research should prioritize long-term environmental durability and the scaling up of SAM applications for industrial implementation.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.