Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse® platform.
Marcella Catania, Claudia Battipaglia, Alberto Perego, Erika Salvi, Emanuela Maderna, Federico Angelo Cazzaniga, Paolo M Rossini, Camillo Marra, Nicola Vanacore, Alberto Redolfi, Daniela Perani, Patrizia Spadin, Maria Cotelli, Stefano Cappa, Naike Caraglia, Pietro Tiraboschi, Fabrizio Tagliavini, Giuseppe Di Fede
{"title":"Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse<sup>®</sup> platform.","authors":"Marcella Catania, Claudia Battipaglia, Alberto Perego, Erika Salvi, Emanuela Maderna, Federico Angelo Cazzaniga, Paolo M Rossini, Camillo Marra, Nicola Vanacore, Alberto Redolfi, Daniela Perani, Patrizia Spadin, Maria Cotelli, Stefano Cappa, Naike Caraglia, Pietro Tiraboschi, Fabrizio Tagliavini, Giuseppe Di Fede","doi":"10.1186/s12987-025-00620-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD). Plasma biomarkers are excellent candidates. However, their ability to reflect the cerebrospinal fluid (CSF) profile - that remains to date the gold standard for the biochemical diagnosis of AD - needs to be confirmed and validated before their implementation in clinical practice. The aims of this study are to analyse the correlation between CSF and plasma Aβ40, Aβ42, Aβ42/Aβ40 and pTau181, and to assess the diagnostic performance of plasma biomarkers in a cohort of subjects affected by Mild Cognitive Impairment (MCI).</p><p><strong>Methods: </strong>The study was performed on 306 subjects affected by MCI, enrolled in the context of the Italian Interceptor Project. Aβ40, Aβ42 and pTau181 were analysed in plasma and CSF, and pTau217 was measured in plasma. The fully automated chemiluminescence enzyme immunoassay and the Lumipulse<sup>®</sup> G600II (Fujirebio) instrument were used for all measurements. We analysed the correlations between CSF and plasma biomarkers and the differences of plasma biomarker concentrations after grouping MCI cases according to AT classification of CSF AD biomarker profiles.</p><p><strong>Results: </strong>We found statistically significant positive correlations between CSF and plasma Aβ42, Aβ42/Aβ40 ratio and pTau181. All the biomarkers, except Aβ40, showed differences in A+ vs. A-, A+T+ vs. A-T- and A+T- vs. A-T- patients. Moreover, Aβ42 and Aβ42/Aβ40 plasma levels were lower in A+T- compared to A-T- and A-T+ groups, and pTau181 and pTau217 plasma levels were higher in A+T+ compared to A+T-. Aβ42/Aβ40 and pTau217 showed a robust performance in distinguishing A+ from A- (AUC = 0.857 and 0.862, respectively) and A+T+ from A-T- (AUC = 0.866 and 0.911) subjects.</p><p><strong>Conclusions: </strong>Our results suggest that plasma biomarkers, and especially Aβ42/Aβ40 ratio and pTau217, are promising candidates for the early detection of AD pathology.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"9"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00620-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD). Plasma biomarkers are excellent candidates. However, their ability to reflect the cerebrospinal fluid (CSF) profile - that remains to date the gold standard for the biochemical diagnosis of AD - needs to be confirmed and validated before their implementation in clinical practice. The aims of this study are to analyse the correlation between CSF and plasma Aβ40, Aβ42, Aβ42/Aβ40 and pTau181, and to assess the diagnostic performance of plasma biomarkers in a cohort of subjects affected by Mild Cognitive Impairment (MCI).
Methods: The study was performed on 306 subjects affected by MCI, enrolled in the context of the Italian Interceptor Project. Aβ40, Aβ42 and pTau181 were analysed in plasma and CSF, and pTau217 was measured in plasma. The fully automated chemiluminescence enzyme immunoassay and the Lumipulse® G600II (Fujirebio) instrument were used for all measurements. We analysed the correlations between CSF and plasma biomarkers and the differences of plasma biomarker concentrations after grouping MCI cases according to AT classification of CSF AD biomarker profiles.
Results: We found statistically significant positive correlations between CSF and plasma Aβ42, Aβ42/Aβ40 ratio and pTau181. All the biomarkers, except Aβ40, showed differences in A+ vs. A-, A+T+ vs. A-T- and A+T- vs. A-T- patients. Moreover, Aβ42 and Aβ42/Aβ40 plasma levels were lower in A+T- compared to A-T- and A-T+ groups, and pTau181 and pTau217 plasma levels were higher in A+T+ compared to A+T-. Aβ42/Aβ40 and pTau217 showed a robust performance in distinguishing A+ from A- (AUC = 0.857 and 0.862, respectively) and A+T+ from A-T- (AUC = 0.866 and 0.911) subjects.
Conclusions: Our results suggest that plasma biomarkers, and especially Aβ42/Aβ40 ratio and pTau217, are promising candidates for the early detection of AD pathology.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).