Zongchao Li, Ruoxuan Xu, Can Li, Chenglin Chi, Xiaoli Yang, Shufang Yang, Rongxia Liu
{"title":"The protective effect and potential mechanism of Zanthoxylum bungeanum Maxim. on atherosclerosis.","authors":"Zongchao Li, Ruoxuan Xu, Can Li, Chenglin Chi, Xiaoli Yang, Shufang Yang, Rongxia Liu","doi":"10.1016/j.fitote.2025.106394","DOIUrl":null,"url":null,"abstract":"<p><p>The pericarp of Zanthoxylum bungeanum Maxim. (ZBM) is an edible spice with medicinal value, and it has anti-obesity, anti-inflammatory, and cardiovascular protective effects. This study investigated the therapeutic effect of ZBM on atherosclerosis (AS) and its potential mechanisms. An in vivo experimental model of AS was established on apolipoprotein-E deficient (ApoE<sup>-/-</sup>) mice to evaluate the efficacy of ZBM. Serum metabolomics combined with the vascular smooth muscle cell (VSMC) proliferation model were subsequently conducted to analyze the mechanisms. Results showed that ZBM effectively alleviated blood lipid disorders, aortic lipid accumulation, and intimal thickness in mice. Metabolomics indicated that ZBM mainly regulated 5 major metabolic pathways, including TCA cycle, steroid hormone biosynthesis, sphingolipid metabolism, glyoxylate and dicarboxylate metabolism, glycerophospholipid metabolism, which affected lipid metabolism and cell proliferation. Further experiments showed that ZBM inhibited VSMC proliferation likely because it blocked the signal transducer activator of transcription 3 (STAT3) phosphorylation and activated nuclear factor E2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, resulting in G0/G1 phase arrest and reactive oxygen species (ROS) clearance.</p>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":" ","pages":"106394"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.fitote.2025.106394","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pericarp of Zanthoxylum bungeanum Maxim. (ZBM) is an edible spice with medicinal value, and it has anti-obesity, anti-inflammatory, and cardiovascular protective effects. This study investigated the therapeutic effect of ZBM on atherosclerosis (AS) and its potential mechanisms. An in vivo experimental model of AS was established on apolipoprotein-E deficient (ApoE-/-) mice to evaluate the efficacy of ZBM. Serum metabolomics combined with the vascular smooth muscle cell (VSMC) proliferation model were subsequently conducted to analyze the mechanisms. Results showed that ZBM effectively alleviated blood lipid disorders, aortic lipid accumulation, and intimal thickness in mice. Metabolomics indicated that ZBM mainly regulated 5 major metabolic pathways, including TCA cycle, steroid hormone biosynthesis, sphingolipid metabolism, glyoxylate and dicarboxylate metabolism, glycerophospholipid metabolism, which affected lipid metabolism and cell proliferation. Further experiments showed that ZBM inhibited VSMC proliferation likely because it blocked the signal transducer activator of transcription 3 (STAT3) phosphorylation and activated nuclear factor E2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, resulting in G0/G1 phase arrest and reactive oxygen species (ROS) clearance.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.