Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases.

IF 4.6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Xin Xin, Rory R Koenen
{"title":"Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases.","authors":"Xin Xin, Rory R Koenen","doi":"10.1080/14728222.2025.2454617","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.</p><p><strong>Areas covered: </strong>This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.</p><p><strong>Expert opinion: </strong>Studies have shown that the cargo of PEV may be dysregulated during cardiovascular disease and delivery to tissues can result in detrimental pathophysiologic effects. Counteracting this process might have the potential to inhibit inflammation, promote angiogenesis, and inhibit cardiomyocyte death. In addition, PEV have potential as biocompatible and autologous drug carriers. Therefore, better research on the mechanisms how PEV act during cardiovascular disease and could be implemented as a therapeutic will provide new perspectives for the treatment of cardiovascular disease.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"1-12"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2454617","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.

Areas covered: This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.

Expert opinion: Studies have shown that the cargo of PEV may be dysregulated during cardiovascular disease and delivery to tissues can result in detrimental pathophysiologic effects. Counteracting this process might have the potential to inhibit inflammation, promote angiogenesis, and inhibit cardiomyocyte death. In addition, PEV have potential as biocompatible and autologous drug carriers. Therefore, better research on the mechanisms how PEV act during cardiovascular disease and could be implemented as a therapeutic will provide new perspectives for the treatment of cardiovascular disease.

评估血小板来源的细胞外囊泡作为心血管疾病治疗靶点的潜力。
导读:心血管疾病(CVD)是世界范围内导致死亡的主要原因。近年来,血小板源性细胞外囊泡(Platelet-derived extracellular vesicles, PEV)在心血管疾病研究中受到广泛关注,因为其所载物质参与多种病理生理过程,如血栓形成、免疫反应、促进或抑制炎症反应、促进血管生成以及细胞增殖和迁移。涉及领域:本文综述了PEV在各种心血管疾病(如动脉粥样硬化、心肌梗死、缺血再灌注损伤和心力衰竭)中的作用及其分子货物(核酸、生物活性脂质、蛋白质),旨在为PEV的病理生理作用以及基于PEV的心血管疾病预防和治疗方法提供新的见解。专家意见:研究表明,在心血管疾病期间,PEV的货物可能失调,并向组织输送可导致有害的病理生理效应。抵消这一过程可能有抑制炎症、促进血管生成和抑制心肌细胞死亡的潜力。此外,PEV还具有作为生物相容性和自体药物载体的潜力。因此,更好地研究PEV在心血管疾病中的作用机制,并将其作为一种治疗手段,将为心血管疾病的治疗提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
1.70%
发文量
58
审稿时长
3 months
期刊介绍: The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials. The Editors welcome: Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development. Articles should not include clinical information including specific drugs and clinical trials. Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs. The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信