S İrem Güler, Cem Levent Altan, E Esma Demircioglu, Nihan Verimli, Beyza Abisoglu, Cigdem Bayraktaroglu, Mustafa Caglar Beker, S Sibel Erdem
{"title":"Glow in the dark tumor: Enhanced near-IR visualization and destruction of cancer with a self-quenched theranostic.","authors":"S İrem Güler, Cem Levent Altan, E Esma Demircioglu, Nihan Verimli, Beyza Abisoglu, Cigdem Bayraktaroglu, Mustafa Caglar Beker, S Sibel Erdem","doi":"10.1016/j.ejpb.2025.114632","DOIUrl":null,"url":null,"abstract":"<p><p>Late diagnosis is one of the major obstacles for the treatment of breast cancer which can be overcome with a system offering sensitive imaging and selective therapeutic effect. In this study, we developed a \"dark-bright\" multifunctional drug delivery system bringing real-time imaging and non-invasive therapy together. Theranostic ability of the system was delivered by Verteporfin (VP), serving as a fluorescence probe and a photosensitizer. To create a \"dark state\" system via self-quenching ability of VP, it was immobilized onto the superparamagnetic iron oxide nanoparticle (SPION) surface. Upon cellular uptake of the \"dark state\" system, release of VP led to fluorescence regain, switching the system to \"bright state\" after which photodynamic therapy (PDT) was initiated to lead to cell death. Theranostic feature of the system was evaluated in MCF-7 and MDA-MB-231 cell lines. Following internalization, fluorescence signal was increased up to ∼56-fold in MCF-7 cells. The IC<sub>50</sub> value decreased ∼20-fold and ∼117-fold in MCF-7 and MDA-MB-231 cell lines, respectively. Moreover, the system significantly inhibited migration in the highly aggressive MDA-MB-231 cell line and induced apoptosis by caspase-3 activation. The developed \"dark-bright\" system is a promising multifunctional drug delivery vehicle with extraordinary theranostic features for the detection and destruction of micro tumors.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114632"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114632","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Late diagnosis is one of the major obstacles for the treatment of breast cancer which can be overcome with a system offering sensitive imaging and selective therapeutic effect. In this study, we developed a "dark-bright" multifunctional drug delivery system bringing real-time imaging and non-invasive therapy together. Theranostic ability of the system was delivered by Verteporfin (VP), serving as a fluorescence probe and a photosensitizer. To create a "dark state" system via self-quenching ability of VP, it was immobilized onto the superparamagnetic iron oxide nanoparticle (SPION) surface. Upon cellular uptake of the "dark state" system, release of VP led to fluorescence regain, switching the system to "bright state" after which photodynamic therapy (PDT) was initiated to lead to cell death. Theranostic feature of the system was evaluated in MCF-7 and MDA-MB-231 cell lines. Following internalization, fluorescence signal was increased up to ∼56-fold in MCF-7 cells. The IC50 value decreased ∼20-fold and ∼117-fold in MCF-7 and MDA-MB-231 cell lines, respectively. Moreover, the system significantly inhibited migration in the highly aggressive MDA-MB-231 cell line and induced apoptosis by caspase-3 activation. The developed "dark-bright" system is a promising multifunctional drug delivery vehicle with extraordinary theranostic features for the detection and destruction of micro tumors.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.