Uses of Chemical Technologies for Meat Decontamination.

IF 4.2 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Donggyun Yim
{"title":"Uses of Chemical Technologies for Meat Decontamination.","authors":"Donggyun Yim","doi":"10.5851/kosfa.2024.e102","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional meat preservation techniques such as smoking, drying, and salting have various shortcomings and limitations in effectively reducing microbial loads and maintaining meat quality. Consequently, chemical compounds have gained attention as promising alternatives for decontamination, offering the potential to extend shelf life and minimize physical, chemical, and sensory changes in meat. Chlorine-based compounds, trisodium phosphate, organic acids, bacteriocins, lactoferrin, and peracetic acid are technologies of recent industrial applications that inhibit spoilage and pathogenic microorganisms in meat. This review explores the critical aspects of decontamination and assesses the efficacy of different chemical compounds employed in meat preservation. These compounds exhibit strong microorganism inactivation capabilities, ensuring minimal alterations to the meat matrix and substantially reducing environmental impact.</p>","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":"45 1","pages":"1-12"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2024.e102","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional meat preservation techniques such as smoking, drying, and salting have various shortcomings and limitations in effectively reducing microbial loads and maintaining meat quality. Consequently, chemical compounds have gained attention as promising alternatives for decontamination, offering the potential to extend shelf life and minimize physical, chemical, and sensory changes in meat. Chlorine-based compounds, trisodium phosphate, organic acids, bacteriocins, lactoferrin, and peracetic acid are technologies of recent industrial applications that inhibit spoilage and pathogenic microorganisms in meat. This review explores the critical aspects of decontamination and assesses the efficacy of different chemical compounds employed in meat preservation. These compounds exhibit strong microorganism inactivation capabilities, ensuring minimal alterations to the meat matrix and substantially reducing environmental impact.

化学技术在肉类净化中的应用。
传统的肉类保鲜技术,如烟熏、干燥和盐渍,在有效减少微生物负荷和保持肉类品质方面存在各种缺点和局限性。因此,化合物作为一种有希望的去污替代品而受到关注,它有可能延长肉类的保质期,并最大限度地减少肉类的物理、化学和感官变化。氯基化合物、磷酸三钠、有机酸、细菌素、乳铁蛋白和过氧乙酸是最近工业应用的抑制肉类腐败和致病微生物的技术。这篇综述探讨了去污的关键方面,并评估了在肉类保存中使用的不同化合物的功效。这些化合物表现出强大的微生物失活能力,确保对肉类基质的最小改变,并大大减少对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Science of Animal Resources
Food Science of Animal Resources Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
6.70
自引率
6.70%
发文量
75
期刊介绍: Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信