Causal Relationship Between Intestinal Microbiota, Inflammatory Cytokines, Peripheral Immune Cells, Plasma Metabolome and Parkinson's Disease: A Mediation Mendelian Randomization Study.

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Chengcheng Wang, Yuhang Tang, Tao Yang, Yuhao Wang, Zihui Niu, Kang Zhang, Ning Lin, Qun Li
{"title":"Causal Relationship Between Intestinal Microbiota, Inflammatory Cytokines, Peripheral Immune Cells, Plasma Metabolome and Parkinson's Disease: A Mediation Mendelian Randomization Study.","authors":"Chengcheng Wang, Yuhang Tang, Tao Yang, Yuhao Wang, Zihui Niu, Kang Zhang, Ning Lin, Qun Li","doi":"10.1111/ejn.16665","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease involving multiple factors. We explored the connection between intestinal microbiome levels and PD by examining inflammatory cytokines, peripheral immune cell counts and plasma metabolomics as potential factors. By obtaining the Genome-Wide Association Study (GWAS) data needed for this study from GWAS Catalog, including summary data for 473 intestinal microbiota traits (N = 5959), 91 inflammatory cytokine traits (N = 14,824), 118 peripheral immune cell count traits (N = 3757), 1400 plasma metabolite traits (N = 8299) and PD traits (N = 482,730). We used two-step Mendelian randomization (MR) mediated analysis to investigate possible pathways from intestinal microbiota to PD mediated by inflammatory cytokines, peripheral immune cells and plasma metabolites. MR has revealed the causal effects of 19 intestinal microbiota, 1 inflammatory cytokine and 12 plasma metabolites on PD, whereas there is no significant causal relationship between immune cell count characteristics and the occurrence of PD. Mediation analysis showed that the associations between the genus Demequina and PD were mediated by tryptophan with mediated proportions of 17.51% (p = 0.0393). Our study demonstrates that genus Demequina may promote the occurrence of PD by reducing the levels of tryptophan.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 2","pages":"e16665"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejn.16665","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a neurodegenerative disease involving multiple factors. We explored the connection between intestinal microbiome levels and PD by examining inflammatory cytokines, peripheral immune cell counts and plasma metabolomics as potential factors. By obtaining the Genome-Wide Association Study (GWAS) data needed for this study from GWAS Catalog, including summary data for 473 intestinal microbiota traits (N = 5959), 91 inflammatory cytokine traits (N = 14,824), 118 peripheral immune cell count traits (N = 3757), 1400 plasma metabolite traits (N = 8299) and PD traits (N = 482,730). We used two-step Mendelian randomization (MR) mediated analysis to investigate possible pathways from intestinal microbiota to PD mediated by inflammatory cytokines, peripheral immune cells and plasma metabolites. MR has revealed the causal effects of 19 intestinal microbiota, 1 inflammatory cytokine and 12 plasma metabolites on PD, whereas there is no significant causal relationship between immune cell count characteristics and the occurrence of PD. Mediation analysis showed that the associations between the genus Demequina and PD were mediated by tryptophan with mediated proportions of 17.51% (p = 0.0393). Our study demonstrates that genus Demequina may promote the occurrence of PD by reducing the levels of tryptophan.

肠道菌群、炎症细胞因子、外周免疫细胞、血浆代谢组与帕金森病的因果关系:一项中介孟德尔随机研究
帕金森病(PD)是一种涉及多种因素的神经退行性疾病。我们通过检测炎症因子、外周免疫细胞计数和血浆代谢组学作为潜在因素来探索肠道微生物组水平与PD之间的联系。通过从GWAS目录中获取本研究所需的GWAS数据,包括473个肠道微生物群特征(N = 5959)、91个炎症细胞因子特征(N = 14824)、118个外周免疫细胞计数特征(N = 3757)、1400个血浆代谢物特征(N = 8299)和PD特征(N = 482730)的汇总数据。我们使用两步孟德尔随机化(MR)介导的分析来研究肠道微生物群由炎症因子、外周免疫细胞和血浆代谢物介导到PD的可能途径。MR已经揭示了19种肠道微生物群、1种炎症细胞因子和12种血浆代谢物对PD的因果作用,而免疫细胞计数特征与PD的发生没有显著的因果关系。中介分析表明,色氨酸介导了该属与PD的相关性,其介导比例为17.51% (p = 0.0393)。我们的研究表明,Demequina属可能通过降低色氨酸水平促进PD的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信