The Alteration of Brain Network Topology in Tinnitus Transition From Recent-Onset to Chronic

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Jiapei Xie, Weidong Zhang, Wei Wei, Yan Bai, Yu Shen, Nan Meng, Xinhui Wang, Meiyun Wang
{"title":"The Alteration of Brain Network Topology in Tinnitus Transition From Recent-Onset to Chronic","authors":"Jiapei Xie,&nbsp;Weidong Zhang,&nbsp;Wei Wei,&nbsp;Yan Bai,&nbsp;Yu Shen,&nbsp;Nan Meng,&nbsp;Xinhui Wang,&nbsp;Meiyun Wang","doi":"10.1111/ejn.16664","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The occurrence and persistence of tinnitus result from the interaction of multiple neural networks. This study aims to explore the alterations in brain network topology associated with the transition of tinnitus from recent-onset to chronic. Twenty-eight patients with chronic tinnitus, 28 patients with recent-onset tinnitus and 28 sex- and age-matched healthy controls (HC) were enrolled in this study. We performed a graph theory analysis to identify aberrant brain network topologies and calculated the correlation between differential brain regions and clinical indicators. Compared with the recent-onset tinnitus group, patients with chronic tinnitus showed decreased global efficiency (Eg, decreased by 3.7%, <i>p</i> &lt; 0.001), local efficiency (Eloc, decreased by 1.8%, <i>p</i> = 0.031) and small-worldness (decreased by 13.8%, <i>p</i> = 0.007) and increased characteristic path length (Lp, increased by 6.8%, <i>p</i> = 0.001). Additionally, ANOVA revealed significant differences in the AUC of degree centrality (DC), nodal efficiency (Ne), nodal clustering coefficient (NCp) and nodal local efficiency (Nle) among the three groups in brain regions such as the superior temporal gyrus, inferior temporal gyrus, anterior cingulate cortex, precuneus, middle occipital gyrus, inferior occipital gyrus, fusiform gyrus, cuneus and putamen (<i>q</i> &lt; 0.05, FDR corrected). Notably, several of these regions were associated with tinnitus duration, distress and loudness. The topological properties of several brain networks were altered in patients with chronic tinnitus compared to those with recent-onset tinnitus, providing new insights into the neural mechanisms of tinnitus chronification. These findings could inform the development of targeted interventions aimed at mitigating the progression from recent-onset to chronic tinnitus.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16664","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence and persistence of tinnitus result from the interaction of multiple neural networks. This study aims to explore the alterations in brain network topology associated with the transition of tinnitus from recent-onset to chronic. Twenty-eight patients with chronic tinnitus, 28 patients with recent-onset tinnitus and 28 sex- and age-matched healthy controls (HC) were enrolled in this study. We performed a graph theory analysis to identify aberrant brain network topologies and calculated the correlation between differential brain regions and clinical indicators. Compared with the recent-onset tinnitus group, patients with chronic tinnitus showed decreased global efficiency (Eg, decreased by 3.7%, p < 0.001), local efficiency (Eloc, decreased by 1.8%, p = 0.031) and small-worldness (decreased by 13.8%, p = 0.007) and increased characteristic path length (Lp, increased by 6.8%, p = 0.001). Additionally, ANOVA revealed significant differences in the AUC of degree centrality (DC), nodal efficiency (Ne), nodal clustering coefficient (NCp) and nodal local efficiency (Nle) among the three groups in brain regions such as the superior temporal gyrus, inferior temporal gyrus, anterior cingulate cortex, precuneus, middle occipital gyrus, inferior occipital gyrus, fusiform gyrus, cuneus and putamen (q < 0.05, FDR corrected). Notably, several of these regions were associated with tinnitus duration, distress and loudness. The topological properties of several brain networks were altered in patients with chronic tinnitus compared to those with recent-onset tinnitus, providing new insights into the neural mechanisms of tinnitus chronification. These findings could inform the development of targeted interventions aimed at mitigating the progression from recent-onset to chronic tinnitus.

Abstract Image

耳鸣由初发向慢性转变时脑网络拓扑结构的改变。
耳鸣的发生和持续是多个神经网络相互作用的结果。本研究旨在探讨耳鸣由初发向慢性转变过程中脑网络拓扑结构的变化。28名慢性耳鸣患者、28名新近发病的耳鸣患者和28名性别和年龄匹配的健康对照(HC)参加了这项研究。我们通过图论分析来识别异常的脑网络拓扑结构,并计算不同脑区与临床指标之间的相关性。与新近发病的耳鸣组相比,慢性耳鸣患者整体效率下降(例如,下降3.7%,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信