{"title":"Exploring the immune resilience of Mediterranean mussels: Recent advances and future directions","authors":"Marco Gerdol, Alberto Pallavicini","doi":"10.1016/j.fsi.2025.110147","DOIUrl":null,"url":null,"abstract":"<div><div>The Mediterranean mussel (<em>Mytilus galloprovincialis</em>) is a key species in European aquaculture, known for its economic and societal importance, particularly as a primary source of income for local fisheries in European coastal areas. While historically resilient to the mass mortality events that have affected other bivalve species, <em>M. galloprovincialis</em> may face increasing threats from emerging pathogens, including bacteria, viruses, and eukaryotic parasites. These microorganisms, often opportunistic, pose heightened risks in the current climate change scenario, where heatwaves are becoming increasingly frequent and the persistent presence of pollutants is suspected to impair the functional response of hemocytes. Over the past decade, significant advancements in immunological research have provided deeper insights into the cellular and molecular mechanisms underlying the robust defense system of <em>M. galloprovincialis</em>, which allows this species to efficiently cope with a broad range of infections. By analyzing the scientific literature published on mussel immunology over the past ten years, this review consolidates current knowledge on the immune system of the Mediterranean mussel. We place a particular focus on the cellular and molecular components involved in the recognition and elimination of microbial pathogens and discuss how the most recent discoveries may inform improved management and disease mitigation strategies for Mediterranean mussel farming in the in the years to come.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"158 ","pages":"Article 110147"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464825000361","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The Mediterranean mussel (Mytilus galloprovincialis) is a key species in European aquaculture, known for its economic and societal importance, particularly as a primary source of income for local fisheries in European coastal areas. While historically resilient to the mass mortality events that have affected other bivalve species, M. galloprovincialis may face increasing threats from emerging pathogens, including bacteria, viruses, and eukaryotic parasites. These microorganisms, often opportunistic, pose heightened risks in the current climate change scenario, where heatwaves are becoming increasingly frequent and the persistent presence of pollutants is suspected to impair the functional response of hemocytes. Over the past decade, significant advancements in immunological research have provided deeper insights into the cellular and molecular mechanisms underlying the robust defense system of M. galloprovincialis, which allows this species to efficiently cope with a broad range of infections. By analyzing the scientific literature published on mussel immunology over the past ten years, this review consolidates current knowledge on the immune system of the Mediterranean mussel. We place a particular focus on the cellular and molecular components involved in the recognition and elimination of microbial pathogens and discuss how the most recent discoveries may inform improved management and disease mitigation strategies for Mediterranean mussel farming in the in the years to come.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.