Scott D. Peacor, Clayton E. Cressler, Kevin L. Pangle, Alexandra V. Rafalski, Chao Song, Earl E. Werner
{"title":"Similar Conditions With Opposite Effects: Predation-Risk Effects on Prey Abundance Are Highly Contingent","authors":"Scott D. Peacor, Clayton E. Cressler, Kevin L. Pangle, Alexandra V. Rafalski, Chao Song, Earl E. Werner","doi":"10.1002/ece3.70861","DOIUrl":null,"url":null,"abstract":"<p>Experiments have shown that predation-risk effects on prey fitness can be highly contingent on environmental conditions, suggesting a potential difficulty in generalizing risk effects on prey abundance in natural settings. Rather than study the influence of a particular controlled factor, we examine the problem with a novel approach. We examined the influence of risk effects in multiple experiments performed under similar study conditions. Any differences in the experiments would typically be deemed incidental, that is, they would not be given attention in methodology, nor be presented as factors affecting results or inferences. Therefore, any differences in the magnitude and direction of risk effects among experiments would indicate that risk effects on prey population abundance are strongly influenced by context in natural communities. The multiple experiments were conducted under similar conditions, objectives, measurables and implementation, and captured much of the complexity of natural systems (e.g., they were performed with diverse prey assemblages (≥ 11 taxa) over multiple prey generations). Our results highlight the potentially profound context dependence of risk effects: risk effects on the density of some zooplankton species varied between a significant negative effect in one experiment to a significant positive effect in another, whereas other species showed significant negative or positive effects in one experiment and no effect in another. We review mechanisms that could underlie risk effects having opposite effects on the same prey. Our findings illustrate that risk effects observed in one study may not hold, even for the same species in the same system.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70861","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Experiments have shown that predation-risk effects on prey fitness can be highly contingent on environmental conditions, suggesting a potential difficulty in generalizing risk effects on prey abundance in natural settings. Rather than study the influence of a particular controlled factor, we examine the problem with a novel approach. We examined the influence of risk effects in multiple experiments performed under similar study conditions. Any differences in the experiments would typically be deemed incidental, that is, they would not be given attention in methodology, nor be presented as factors affecting results or inferences. Therefore, any differences in the magnitude and direction of risk effects among experiments would indicate that risk effects on prey population abundance are strongly influenced by context in natural communities. The multiple experiments were conducted under similar conditions, objectives, measurables and implementation, and captured much of the complexity of natural systems (e.g., they were performed with diverse prey assemblages (≥ 11 taxa) over multiple prey generations). Our results highlight the potentially profound context dependence of risk effects: risk effects on the density of some zooplankton species varied between a significant negative effect in one experiment to a significant positive effect in another, whereas other species showed significant negative or positive effects in one experiment and no effect in another. We review mechanisms that could underlie risk effects having opposite effects on the same prey. Our findings illustrate that risk effects observed in one study may not hold, even for the same species in the same system.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.