Improved cost-effectiveness of species monitoring programs through data integration.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-01-20 Epub Date: 2025-01-06 DOI:10.1016/j.cub.2024.11.051
Ardiantiono, Nicolas J Deere, David J I Seaman, U Mamat Rahmat, Eka Ramadiyanta, Muhammad I Lubis, Ahtu Trihangga, Ahmad Yasin, Gunawan Alza, Dessy P Sari, Muhammad Daud, Ridha Abdullah, Rina Mutia, Dewi Melvern, Tarmizi, Jatna Supriatna, Matthew J Struebig
{"title":"Improved cost-effectiveness of species monitoring programs through data integration.","authors":"Ardiantiono, Nicolas J Deere, David J I Seaman, U Mamat Rahmat, Eka Ramadiyanta, Muhammad I Lubis, Ahtu Trihangga, Ahmad Yasin, Gunawan Alza, Dessy P Sari, Muhammad Daud, Ridha Abdullah, Rina Mutia, Dewi Melvern, Tarmizi, Jatna Supriatna, Matthew J Struebig","doi":"10.1016/j.cub.2024.11.051","DOIUrl":null,"url":null,"abstract":"<p><p>Conservation initiatives strive for reliable and cost-effective species monitoring.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup> However, resource constraints mean management decisions are overly reliant on data derived from single methodologies, resulting in taxonomic or geographic biases.<sup>4</sup> We introduce a data integration framework to optimize species monitoring in terms of spatial representation, the reliability of biodiversity metrics, and the cost of implementation, focusing on tigers and their principal prey (sambar deer and wild pigs). We combined information from unstructured ranger patrols, systematic sign transects, and camera traps in Sumatra's largest remaining tropical forest and used integrated community occupancy models to analyze this multifaceted dataset in a unified way. Data integration improved the precision of species occupancy estimates by 14%-42%, enhanced the accuracy of species inferences, expanded the spatial scope of inference to the landscape level, and cut operational costs up to 51-fold. Our framework demonstrates the underappreciated value of integrating unstructured observations with monitoring data derived from traditional wildlife surveys.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"35 2","pages":"391-397.e3"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conservation initiatives strive for reliable and cost-effective species monitoring.1,2,3 However, resource constraints mean management decisions are overly reliant on data derived from single methodologies, resulting in taxonomic or geographic biases.4 We introduce a data integration framework to optimize species monitoring in terms of spatial representation, the reliability of biodiversity metrics, and the cost of implementation, focusing on tigers and their principal prey (sambar deer and wild pigs). We combined information from unstructured ranger patrols, systematic sign transects, and camera traps in Sumatra's largest remaining tropical forest and used integrated community occupancy models to analyze this multifaceted dataset in a unified way. Data integration improved the precision of species occupancy estimates by 14%-42%, enhanced the accuracy of species inferences, expanded the spatial scope of inference to the landscape level, and cut operational costs up to 51-fold. Our framework demonstrates the underappreciated value of integrating unstructured observations with monitoring data derived from traditional wildlife surveys.

通过数据整合提高物种监测项目的成本效益。
保育措施力求可靠及具成本效益的物种监测。然而,资源限制意味着管理决策过度依赖于单一方法的数据,导致分类学或地理上的偏见本文以老虎及其主要猎物(鹿和野猪)为研究对象,引入了一个数据集成框架,从空间表征、生物多样性指标的可靠性和实施成本等方面优化物种监测。我们结合了来自苏门答腊岛现存最大的热带森林的非结构化护林员巡逻、系统标志样带和相机陷阱的信息,并使用综合社区占用模型以统一的方式分析了这个多方面的数据集。数据整合使物种占用估算精度提高14% ~ 42%,物种推断精度提高,推断空间范围扩展到景观层面,运营成本降低高达51倍。我们的框架展示了将非结构化观测与来自传统野生动物调查的监测数据相结合的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信