Kabiru Ayobami Jimoh, Norhashila Hashim, Rosnah Shamsudin, Hasfalina Che Man, Mahirah Jahari, Puteri Nurain Megat Ahmad Azman, Daniel I Onwude
{"title":"Hyperspectral imaging for detection of macronutrients retained in glutinous rice under different drying conditions.","authors":"Kabiru Ayobami Jimoh, Norhashila Hashim, Rosnah Shamsudin, Hasfalina Che Man, Mahirah Jahari, Puteri Nurain Megat Ahmad Azman, Daniel I Onwude","doi":"10.1016/j.crfs.2024.100963","DOIUrl":null,"url":null,"abstract":"<p><p>This study detected the macronutrients retained in glutinous rice (GR) under different drying conditions by innovatively applying visible-near infrared hyperspectral imaging coupled with different spectra preprocessing and effective wavelength selection techniques (EWs). Subsequently, predictive models were developed based on processed spectra for the detection of the macronutrients, which include protein content (PC), moisture content (MC), fat content (FC), and ash content (AC). The result shows the raw spectra-based model had a prediction accuracy ( <math> <mrow><msubsup><mi>R</mi> <mi>p</mi> <mn>2</mn></msubsup> </mrow> </math> ) of 0.6493, 0.9521, 0.4594, and 0.9773 for PC, MC, FC, and AC, respectively. Applying Savitzky Golay first derivatives (SG1D) method increases the <math> <mrow><msubsup><mi>R</mi> <mi>p</mi> <mn>2</mn></msubsup> </mrow> </math> value to 0.9972, 0.9970, 0.9857 and 0.9972 for PC, MC, FC, and AC, respectively. Using the variable iterative space shrinkage algorithm (VISSA) as EWs reduces the spectral bands by over 60%, and this increases the accuracy of the model (SG1D-VISSA-PLSR) to 100%. Therefore, the developed SGID-VISSA-PLSR can be used to build a smart and reliable spectral system for detecting the macronutrients in GR grains.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"100963"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100963","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study detected the macronutrients retained in glutinous rice (GR) under different drying conditions by innovatively applying visible-near infrared hyperspectral imaging coupled with different spectra preprocessing and effective wavelength selection techniques (EWs). Subsequently, predictive models were developed based on processed spectra for the detection of the macronutrients, which include protein content (PC), moisture content (MC), fat content (FC), and ash content (AC). The result shows the raw spectra-based model had a prediction accuracy ( ) of 0.6493, 0.9521, 0.4594, and 0.9773 for PC, MC, FC, and AC, respectively. Applying Savitzky Golay first derivatives (SG1D) method increases the value to 0.9972, 0.9970, 0.9857 and 0.9972 for PC, MC, FC, and AC, respectively. Using the variable iterative space shrinkage algorithm (VISSA) as EWs reduces the spectral bands by over 60%, and this increases the accuracy of the model (SG1D-VISSA-PLSR) to 100%. Therefore, the developed SGID-VISSA-PLSR can be used to build a smart and reliable spectral system for detecting the macronutrients in GR grains.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.