{"title":"Prediction of Current and Future Distributions of Chalcophora detrita (Coleoptera: Buprestidae) Under Climate Change Scenarios","authors":"Arif Duyar, Muhammed Arif Demir, Mahmut Kabalak","doi":"10.1002/ece3.70693","DOIUrl":null,"url":null,"abstract":"<p>The consequences of climate change, accelerated by anthropogenic activities, have different effects on different ecosystems, and the severity of these effects is predicted to increase in the near future. The number of studies investigating how forest ecosystems respond to these changes is increasing. However, there remains a significant gap in research concerning how saproxylic organisms—one of the key contributors to the healthy functioning of these fragile ecosystems—will respond to the consequences of climate change. In our study, we estimated the suitable habitats of the polymorphic species <i>Chalcophora detrita</i> which is distributed across Italy, Albania, Bulgaria, Greece, Türkiye, Cyprus, Syria, Israel and Lebanon. This species of both saproxylic and economic importance, was modelled under current environmental conditions, climate change scenarios and possible future conditions by ecological niche modelling (ENM). An ensemble model was created by using 11 different algorithms (Artificial Neural Network, Classification Tree Analysis, eXtreme Gradient Boosting, Flexible Discriminant Analysis, Generalised Additive Model, Generalised Boosting Model, Generalised Linear Model, Multivariate Adaptive Regression Splines, Maximum Entropy, Random Forest, Surface Range Envelope) to predict the potential suitable habitats of <i>C. detrita</i>. Two different future scenarios (SSP2-4.5, relatively optimistic and SSP5-8.5, most pessimistic) are divided into 2021–2040, 2041–2060, 2061–2080 and 2081–2100 time periods. The results of our ENM indicated that bioclimatic variables contribute more than topographic and land cover variables to suitable habitats for the species under current conditions. Furthermore, future scenarios demonstrated that suitable habitats for this species will gradually decrease across the geographical region where the species is distributed. This study provides a theoretical reference framework for the conservation of habitats and the improvement of management plans for species belonging to the genus <i>Chalcophora</i> Dejean 1833 and the other saproxylic beetles.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70693","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The consequences of climate change, accelerated by anthropogenic activities, have different effects on different ecosystems, and the severity of these effects is predicted to increase in the near future. The number of studies investigating how forest ecosystems respond to these changes is increasing. However, there remains a significant gap in research concerning how saproxylic organisms—one of the key contributors to the healthy functioning of these fragile ecosystems—will respond to the consequences of climate change. In our study, we estimated the suitable habitats of the polymorphic species Chalcophora detrita which is distributed across Italy, Albania, Bulgaria, Greece, Türkiye, Cyprus, Syria, Israel and Lebanon. This species of both saproxylic and economic importance, was modelled under current environmental conditions, climate change scenarios and possible future conditions by ecological niche modelling (ENM). An ensemble model was created by using 11 different algorithms (Artificial Neural Network, Classification Tree Analysis, eXtreme Gradient Boosting, Flexible Discriminant Analysis, Generalised Additive Model, Generalised Boosting Model, Generalised Linear Model, Multivariate Adaptive Regression Splines, Maximum Entropy, Random Forest, Surface Range Envelope) to predict the potential suitable habitats of C. detrita. Two different future scenarios (SSP2-4.5, relatively optimistic and SSP5-8.5, most pessimistic) are divided into 2021–2040, 2041–2060, 2061–2080 and 2081–2100 time periods. The results of our ENM indicated that bioclimatic variables contribute more than topographic and land cover variables to suitable habitats for the species under current conditions. Furthermore, future scenarios demonstrated that suitable habitats for this species will gradually decrease across the geographical region where the species is distributed. This study provides a theoretical reference framework for the conservation of habitats and the improvement of management plans for species belonging to the genus Chalcophora Dejean 1833 and the other saproxylic beetles.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.