{"title":"Mitochondria-Targeted Antioxidant (MitoQ) and Nontargeted Antioxidant (Idebenone) Mitigate Mitochondrial Dysfunction in Corneal Endothelial Cells.","authors":"Myriam Böhm, Mohit Parekh, Neha Deshpande, Queenie Cheung, Nathan Shatz, Varun Kumar, Ula V Jurkunas","doi":"10.1097/ICO.0000000000003801","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effectiveness of mitochondrial-targeted antioxidant mitoquinone (MitoQ) and nontargeted antioxidant idebenone (Idb) in alleviating mitochondrial dysfunction in corneal endothelial cells (CEnCs).</p><p><strong>Methods: </strong>In vitro experiments were conducted using immortalized normal human corneal endothelial cells (HCEnC-21T; SVN1-67F) and Fuchs endothelial corneal dystrophy (FECD) cells (SVF5-54F; SVF3-76M). Cells were pretreated with MitoQ or Idb and then exposed to menadione (MN) with simultaneous antioxidant treatment. Mitochondrial parameters were evaluated through adenosine triphosphate viability assays, JC-1 staining for mitochondrial membrane potential, and Tom-20 antibody staining for fragmentation, with analysis performed using ImageJ software. HCEnC-21T cells were additionally exposed to ultraviolet-A (25 J/cm2) to assess drug effects under physiological stress. Mitochondrial fragmentation in FECD specimens was analyzed pre- and post-treatment with the drugs. Statistical analysis was conducted using 1-/2-way analysis of variance with post-hoc Tukey test.</p><p><strong>Results: </strong>MitoQ and Idb enhanced cell viability and mitochondrial membrane potential in both normal and FECD cells under MN-induced stress. Idb reduced MN-induced mitochondrial fragmentation by 32% more than MitoQ in HCEnC-21T cells and by 13% more in SVF5-54F cells. Under ultraviolet-A stress, Idb and MitoQ improved mitochondrial function by 31% and 25%, respectively, with MitoQ increasing mitochondrial function by 42% in FECD specimens.</p><p><strong>Conclusions: </strong>Differential responses in mitochondrial dysfunction across cell lines highlight disease heterogeneity. MitoQ and Idb protected CEnCs from oxidative stress and improved mitochondrial bioenergetics, suggesting that mitochondrial-targeted antioxidants could be considered for mitochondrial dysfunction in CEnCs.</p>","PeriodicalId":10710,"journal":{"name":"Cornea","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cornea","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ICO.0000000000003801","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate the effectiveness of mitochondrial-targeted antioxidant mitoquinone (MitoQ) and nontargeted antioxidant idebenone (Idb) in alleviating mitochondrial dysfunction in corneal endothelial cells (CEnCs).
Methods: In vitro experiments were conducted using immortalized normal human corneal endothelial cells (HCEnC-21T; SVN1-67F) and Fuchs endothelial corneal dystrophy (FECD) cells (SVF5-54F; SVF3-76M). Cells were pretreated with MitoQ or Idb and then exposed to menadione (MN) with simultaneous antioxidant treatment. Mitochondrial parameters were evaluated through adenosine triphosphate viability assays, JC-1 staining for mitochondrial membrane potential, and Tom-20 antibody staining for fragmentation, with analysis performed using ImageJ software. HCEnC-21T cells were additionally exposed to ultraviolet-A (25 J/cm2) to assess drug effects under physiological stress. Mitochondrial fragmentation in FECD specimens was analyzed pre- and post-treatment with the drugs. Statistical analysis was conducted using 1-/2-way analysis of variance with post-hoc Tukey test.
Results: MitoQ and Idb enhanced cell viability and mitochondrial membrane potential in both normal and FECD cells under MN-induced stress. Idb reduced MN-induced mitochondrial fragmentation by 32% more than MitoQ in HCEnC-21T cells and by 13% more in SVF5-54F cells. Under ultraviolet-A stress, Idb and MitoQ improved mitochondrial function by 31% and 25%, respectively, with MitoQ increasing mitochondrial function by 42% in FECD specimens.
Conclusions: Differential responses in mitochondrial dysfunction across cell lines highlight disease heterogeneity. MitoQ and Idb protected CEnCs from oxidative stress and improved mitochondrial bioenergetics, suggesting that mitochondrial-targeted antioxidants could be considered for mitochondrial dysfunction in CEnCs.
期刊介绍:
For corneal specialists and for all general ophthalmologists with an interest in this exciting subspecialty, Cornea brings together the latest clinical and basic research on the cornea and the anterior segment of the eye. Each volume is peer-reviewed by Cornea''s board of world-renowned experts and fully indexed in archival format. Your subscription brings you the latest developments in your field and a growing library of valuable professional references.
Sponsored by The Cornea Society which was founded as the Castroviejo Cornea Society in 1975.