Nutritional Evaluation and Free Radical Scavenging Activity of Nano-formulated Selenium-Moringa Peregrine Seed Extract as a Promising Suppressor of TGF-β1/P38/NF-kβ Signaling Pathway in HgCl2 Intoxicated-Mice.
Samar M Aborhyem, Reham A Hamdy, Mohammed A Hussein, Mahmoud M Eltawila
{"title":"Nutritional Evaluation and Free Radical Scavenging Activity of Nano-formulated Selenium-Moringa Peregrine Seed Extract as a Promising Suppressor of TGF-β1/P38/NF-kβ Signaling Pathway in HgCl2 Intoxicated-Mice.","authors":"Samar M Aborhyem, Reham A Hamdy, Mohammed A Hussein, Mahmoud M Eltawila","doi":"10.2174/0113892010352642241221152820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Moringa peregrina, renowned for its extensive health benefits, continues to reveal its therapeutic potential through ongoing research. The synthesis of Moringa peregrina extract-selenium nanoparticles (MPE-SeNPs) has emerged as a promising approach in developing versatile therapeutic agents.</p><p><strong>Objective: </strong>To evaluate the protective effects of MPE-SeNPs against oxidative damage and inflammation caused by HgCl2 exposure in mice.</p><p><strong>Methods: </strong>The study involved extracting and characterizing the dried powdered seeds of Moringa peregrina to determine their nutritional and bioactive contents. MPE-SeNPs were synthesized using plant extracts and characterized through TEM, UV-Vis, and FT-IR techniques to assess their chelating and superoxide radical scavenging activities. The LD50 of MPE-SeNPs was determined, and doses of 1/50 and 1/20 of the LD50 were administered to HgCl₂-exposed mice to evaluate lung protective effects. Biochemical analyses measured plasma lipid profiles and lung antioxidant status, while gene expression of TGF-β1, P38, and NF-kβ in lung tissue was analyzed. Histopathological examinations of lung tissues were conducted to observe structural changes and fibrosis, providing a comprehensive assessment of the protective efficacy of MPE-SeNPs against oxidative damage and inflammation.</p><p><strong>Results: </strong>The raw Moringa peregrine seeds contain approximately 27.81% fat, 32.10% protein, 13.11% fiber, 4.11% ash and 22.93% carbohydrate content. The phenolic and flavonoid content in debittered seeds is approximately 76.42 mg of GAE/g DE), and 15.55 mg of QE/g DE, respectively. However, MPE and MPESeNPs exhibited chelating activity with 54 and 80.64% after 60 min. Additionally, at a concentration of 120 μg/mL, the superoxide radical scavenging activity was 71% for MPE and 93% for MPE-SeNPs after 5 minutes of incubation. The IC50 values recorded for MPE and MPE-SeNPs were 80.38 and 48.01 μg/mL, respectively. MPE-SeNPs had an average size of approximately 130.63 nm. UV-Vis spectrum peaks and FTIR identified functional groups associated with phenolics and flavonoids. LD50 of MPE-SeNPs was estimated to be 773 mg/kg body weight. Oral administration of MPE and MPE-SeNPs led to improvements in plasma lipid profile as well as lung antioxidant status. Moreover, downregulation of lung TGF-β1, P38, and NF-kβ gene expression in HgCl2-intoxicated mice when treated with MPE-SeNPs. In addition, MPE-SeNPs improve lung tissue by enhancing antioxidant enzymes, suppressing pro-inflammatory cytokines, and scavenging free radicals.</p><p><strong>Conclusion: </strong>The study reveals that Moringa peregrina extract combined with selenium nanoparticles (MPESeNPs) offers significant protection against oxidative damage induced by HgCl₂ exposure. The enhanced antioxidant and anti-inflammatory properties of MPE-SeNPs, particularly at a dose of 38.65 mg/kg body weight, demonstrate their potential as a powerful natural therapy for pulmonary fibrosis. These findings underscore the promise of MPE-SeNPs in improving lung health by mitigating oxidative stress, reducing inflammation, and promoting tissue repair, paving the way for innovative treatments in respiratory medicine.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010352642241221152820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Moringa peregrina, renowned for its extensive health benefits, continues to reveal its therapeutic potential through ongoing research. The synthesis of Moringa peregrina extract-selenium nanoparticles (MPE-SeNPs) has emerged as a promising approach in developing versatile therapeutic agents.
Objective: To evaluate the protective effects of MPE-SeNPs against oxidative damage and inflammation caused by HgCl2 exposure in mice.
Methods: The study involved extracting and characterizing the dried powdered seeds of Moringa peregrina to determine their nutritional and bioactive contents. MPE-SeNPs were synthesized using plant extracts and characterized through TEM, UV-Vis, and FT-IR techniques to assess their chelating and superoxide radical scavenging activities. The LD50 of MPE-SeNPs was determined, and doses of 1/50 and 1/20 of the LD50 were administered to HgCl₂-exposed mice to evaluate lung protective effects. Biochemical analyses measured plasma lipid profiles and lung antioxidant status, while gene expression of TGF-β1, P38, and NF-kβ in lung tissue was analyzed. Histopathological examinations of lung tissues were conducted to observe structural changes and fibrosis, providing a comprehensive assessment of the protective efficacy of MPE-SeNPs against oxidative damage and inflammation.
Results: The raw Moringa peregrine seeds contain approximately 27.81% fat, 32.10% protein, 13.11% fiber, 4.11% ash and 22.93% carbohydrate content. The phenolic and flavonoid content in debittered seeds is approximately 76.42 mg of GAE/g DE), and 15.55 mg of QE/g DE, respectively. However, MPE and MPESeNPs exhibited chelating activity with 54 and 80.64% after 60 min. Additionally, at a concentration of 120 μg/mL, the superoxide radical scavenging activity was 71% for MPE and 93% for MPE-SeNPs after 5 minutes of incubation. The IC50 values recorded for MPE and MPE-SeNPs were 80.38 and 48.01 μg/mL, respectively. MPE-SeNPs had an average size of approximately 130.63 nm. UV-Vis spectrum peaks and FTIR identified functional groups associated with phenolics and flavonoids. LD50 of MPE-SeNPs was estimated to be 773 mg/kg body weight. Oral administration of MPE and MPE-SeNPs led to improvements in plasma lipid profile as well as lung antioxidant status. Moreover, downregulation of lung TGF-β1, P38, and NF-kβ gene expression in HgCl2-intoxicated mice when treated with MPE-SeNPs. In addition, MPE-SeNPs improve lung tissue by enhancing antioxidant enzymes, suppressing pro-inflammatory cytokines, and scavenging free radicals.
Conclusion: The study reveals that Moringa peregrina extract combined with selenium nanoparticles (MPESeNPs) offers significant protection against oxidative damage induced by HgCl₂ exposure. The enhanced antioxidant and anti-inflammatory properties of MPE-SeNPs, particularly at a dose of 38.65 mg/kg body weight, demonstrate their potential as a powerful natural therapy for pulmonary fibrosis. These findings underscore the promise of MPE-SeNPs in improving lung health by mitigating oxidative stress, reducing inflammation, and promoting tissue repair, paving the way for innovative treatments in respiratory medicine.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.