Susanna Gartler, Johanna Scheer, Alexandra Meyer, Khaled Abass, Annett Bartsch, Natalia Doloisio, Jade Falardeau, Gustaf Hugelius, Anna Irrgang, Jón Haukur Ingimundarson, Leneisja Jungsberg, Hugues Lantuit, Joan Nymand Larsen, Rachele Lodi, Victoria Sophie Martin, Louise Mercer, David Nielsen, Paul Overduin, Olga Povoroznyuk, Arja Rautio, Peter Schweitzer, Niek Jesse Speetjens, Soňa Tomaškovičová, Ulla Timlin, Jean-Paul Vanderlinden, Jorien Vonk, Levi Westerveld, Thomas Ingeman-Nielsen
{"title":"A transdisciplinary, comparative analysis reveals key risks from Arctic permafrost thaw.","authors":"Susanna Gartler, Johanna Scheer, Alexandra Meyer, Khaled Abass, Annett Bartsch, Natalia Doloisio, Jade Falardeau, Gustaf Hugelius, Anna Irrgang, Jón Haukur Ingimundarson, Leneisja Jungsberg, Hugues Lantuit, Joan Nymand Larsen, Rachele Lodi, Victoria Sophie Martin, Louise Mercer, David Nielsen, Paul Overduin, Olga Povoroznyuk, Arja Rautio, Peter Schweitzer, Niek Jesse Speetjens, Soňa Tomaškovičová, Ulla Timlin, Jean-Paul Vanderlinden, Jorien Vonk, Levi Westerveld, Thomas Ingeman-Nielsen","doi":"10.1038/s43247-024-01883-w","DOIUrl":null,"url":null,"abstract":"<p><p>Permafrost thaw poses diverse risks to Arctic environments and livelihoods. Understanding the effects of permafrost thaw is vital for informed policymaking and adaptation efforts. Here, we present the consolidated findings of a risk analysis spanning four study regions: Longyearbyen (Svalbard, Norway), the Avannaata municipality (Greenland), the Beaufort Sea region and the Mackenzie River Delta (Canada) and the Bulunskiy District of the Sakha Republic (Russia). Local stakeholders' and scientists' perceptions shaped our understanding of the risks as dynamic, socionatural phenomena involving physical processes, key hazards, and societal consequences. Through an inter- and transdisciplinary risk analysis based on multidirectional knowledge exchanges and thematic network analysis, we identified five key hazards of permafrost thaw. These include infrastructure failure, disruption of mobility and supplies, decreased water quality, challenges for food security, and exposure to diseases and contaminants. The study's novelty resides in the comparative approach spanning different disciplines, environmental and societal contexts, and the transdisciplinary synthesis considering various risk perceptions.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"21"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11738985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-024-01883-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Permafrost thaw poses diverse risks to Arctic environments and livelihoods. Understanding the effects of permafrost thaw is vital for informed policymaking and adaptation efforts. Here, we present the consolidated findings of a risk analysis spanning four study regions: Longyearbyen (Svalbard, Norway), the Avannaata municipality (Greenland), the Beaufort Sea region and the Mackenzie River Delta (Canada) and the Bulunskiy District of the Sakha Republic (Russia). Local stakeholders' and scientists' perceptions shaped our understanding of the risks as dynamic, socionatural phenomena involving physical processes, key hazards, and societal consequences. Through an inter- and transdisciplinary risk analysis based on multidirectional knowledge exchanges and thematic network analysis, we identified five key hazards of permafrost thaw. These include infrastructure failure, disruption of mobility and supplies, decreased water quality, challenges for food security, and exposure to diseases and contaminants. The study's novelty resides in the comparative approach spanning different disciplines, environmental and societal contexts, and the transdisciplinary synthesis considering various risk perceptions.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.