Raja Lakhal, Manaf AlMatar, Tahani Alkalaf, Osman Albarri
{"title":"Transcriptome-Based Analysis of the Oxidative Response of Thermotoga maritima to the O2 Stress.","authors":"Raja Lakhal, Manaf AlMatar, Tahani Alkalaf, Osman Albarri","doi":"10.2174/0113862073339580241128075031","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thermotoga maritima is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.</p><p><strong>Methods: </strong>A 2.3-L bioreactor was specifically designed to cultivate hyperthermophilic bacteria under carefully regulated pH, redox potential, temperature, and dissolved O2.</p><p><strong>Results: </strong>Using this bioreactor, which was adjusted at 80°C and pH 7.0, it was found that Thermotoga maritima demonstrated continued growth even after being exposed to oxygen for an extended period. Transcription studies revealed that following prolonged oxygen exposure, the genes encoding ROS-scavenging systems, alkyl hydroperoxide reductase (ahp), thioredoxindependent thiol peroxidase (bcp 2), and, to a lesser extent, neelaredoxin (nlr), were upregulated/ overexpressed. When oxygen was available, the metabolism of glucose was diverted to make lactate rather than acetate.</p><p><strong>Conclusion: </strong>Based on the O/R ratio of 1.0 in anaerobiosis and 1.67 in the presence of O2, we may conclude that Thermotoga maritima is capable of semi-oxidative metabolism.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073339580241128075031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Thermotoga maritima is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.
Methods: A 2.3-L bioreactor was specifically designed to cultivate hyperthermophilic bacteria under carefully regulated pH, redox potential, temperature, and dissolved O2.
Results: Using this bioreactor, which was adjusted at 80°C and pH 7.0, it was found that Thermotoga maritima demonstrated continued growth even after being exposed to oxygen for an extended period. Transcription studies revealed that following prolonged oxygen exposure, the genes encoding ROS-scavenging systems, alkyl hydroperoxide reductase (ahp), thioredoxindependent thiol peroxidase (bcp 2), and, to a lesser extent, neelaredoxin (nlr), were upregulated/ overexpressed. When oxygen was available, the metabolism of glucose was diverted to make lactate rather than acetate.
Conclusion: Based on the O/R ratio of 1.0 in anaerobiosis and 1.67 in the presence of O2, we may conclude that Thermotoga maritima is capable of semi-oxidative metabolism.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.