Evren Algın Yapar, Ebrar İnal, Bilge Ahsen Kara, Tuana Seray Yıldırım, Fatıma Nur Yılmaz, Cemre Özkanca, Meryem Sedef Erdal, Sibel Döşler, Murat Kartal
{"title":"Herbal Mucoadhesive Gels for Canker Sores: Analysis of Physicochemical Properties, Efficacy, and Safety.","authors":"Evren Algın Yapar, Ebrar İnal, Bilge Ahsen Kara, Tuana Seray Yıldırım, Fatıma Nur Yılmaz, Cemre Özkanca, Meryem Sedef Erdal, Sibel Döşler, Murat Kartal","doi":"10.2174/0113862073341539241223195855","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The goal of this research was to formulate mucoadhesive gels using hydroglyceric extracts of Cistus creticus L. and Inula viscosa (L.) Aiton, either separately or in combination, utilizes carboxymethyl cellulose and detects their physicochemical characteristics and safety for oromucosal cells and antimicrobial (antibacterial, antifungal, and antiviral) efficacy to assess their performance.</p><p><strong>Methods: </strong>Using LC-HRMS, the extracts of C. creticus and I. viscosa were examined. Evaluations were conducted on the formulations' viscosity, cytotoxicity-cell proliferation controls, texture, antibacterial activity, pH, and organoleptic properties. The minimal inhibitory concentrations and microbroth dilution tests were used to assess the effectiveness of the formulations.</p><p><strong>Results: </strong>The pH, organoleptic, and physical characteristics of each formulation have been determined to be appropriate. The research results demonstrated that I. viscosa contributed antiviral efficacy to the formulations linked to dose-dependent activities against all examined mouth pathogens, whereas C. creticus provided antibacterial and antifungal efficacy. The formulation containing C. creticus extract alone was the most cytotoxic, whereas the formulation including I. viscosa extract alone was the least cytotoxic against gingival fibroblast cells, according to the findings of tests on cell proliferation and cytotoxicity.</p><p><strong>Conclusion: </strong>The formulation contained a 32% 1:1 mixture of I. viscosa and C. creticus hydroglyceric extracts was detected as safe with acceptable cytotoxicity along with antibacterial and antiviral effectiveness, were encouraging for future investigations.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073341539241223195855","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The goal of this research was to formulate mucoadhesive gels using hydroglyceric extracts of Cistus creticus L. and Inula viscosa (L.) Aiton, either separately or in combination, utilizes carboxymethyl cellulose and detects their physicochemical characteristics and safety for oromucosal cells and antimicrobial (antibacterial, antifungal, and antiviral) efficacy to assess their performance.
Methods: Using LC-HRMS, the extracts of C. creticus and I. viscosa were examined. Evaluations were conducted on the formulations' viscosity, cytotoxicity-cell proliferation controls, texture, antibacterial activity, pH, and organoleptic properties. The minimal inhibitory concentrations and microbroth dilution tests were used to assess the effectiveness of the formulations.
Results: The pH, organoleptic, and physical characteristics of each formulation have been determined to be appropriate. The research results demonstrated that I. viscosa contributed antiviral efficacy to the formulations linked to dose-dependent activities against all examined mouth pathogens, whereas C. creticus provided antibacterial and antifungal efficacy. The formulation containing C. creticus extract alone was the most cytotoxic, whereas the formulation including I. viscosa extract alone was the least cytotoxic against gingival fibroblast cells, according to the findings of tests on cell proliferation and cytotoxicity.
Conclusion: The formulation contained a 32% 1:1 mixture of I. viscosa and C. creticus hydroglyceric extracts was detected as safe with acceptable cytotoxicity along with antibacterial and antiviral effectiveness, were encouraging for future investigations.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.