A Roadmap Towards the Identification and Validation of Conserved T Cell Epitope Regions in Viral Pathogen Families with Pandemic Potential.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alba Grifoni, John Sidney, Daniela Weiskopf, Richard H Scheuermann, Alessandro Sette
{"title":"A Roadmap Towards the Identification and Validation of Conserved T Cell Epitope Regions in Viral Pathogen Families with Pandemic Potential.","authors":"Alba Grifoni, John Sidney, Daniela Weiskopf, Richard H Scheuermann, Alessandro Sette","doi":"10.2174/0113892010349200241204062202","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens. Examples of viral families considered and their respective prototypes (species/ subspecies) are Coronaviridae (Severe Acute Respiratory Syndrome-related Coronavirus/ SARS-CoV-2), Flaviviridae (Dengue virus/DENV2), Togaviridae (Chikungunya virus/ CHIKV), Paramyixoviridae (Morbillivirus/measles), Arenaviridae (Mammarenavirus/ Lassa), and Picornaviridae (Enterovirus C/poliovirus). The peptide sequences encoded in each prototype virus are then analyzed to determine their conservation across different viral taxonomic groups and viral variants derived from each of the VFPP. We outline available methodologies for epitope discovery based on panels of overlapping peptides and bioinformatics- based predictions of HLA-peptide binding, along with high-throughput in vitro assays, with emphasis on addressing coverage of the general worldwide population. Validation can be achieved by a variety of methodologies, including determining HLA restriction and recognition in samples from volunteers convalescent from previous infections or immunized with approved or experimental vaccines, and immunophenotyping of responding T cells. The capacity of these regions to induce crossreactive T cell responses can be tested experimentally with homologous peptides derived from the various viral species of interest. Importantly, they could be considered as a component of pan-viral family vaccines. Conversely, immunogenic regions that are highly specific to a given virus could be of interest for diagnostic applications.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010349200241204062202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens. Examples of viral families considered and their respective prototypes (species/ subspecies) are Coronaviridae (Severe Acute Respiratory Syndrome-related Coronavirus/ SARS-CoV-2), Flaviviridae (Dengue virus/DENV2), Togaviridae (Chikungunya virus/ CHIKV), Paramyixoviridae (Morbillivirus/measles), Arenaviridae (Mammarenavirus/ Lassa), and Picornaviridae (Enterovirus C/poliovirus). The peptide sequences encoded in each prototype virus are then analyzed to determine their conservation across different viral taxonomic groups and viral variants derived from each of the VFPP. We outline available methodologies for epitope discovery based on panels of overlapping peptides and bioinformatics- based predictions of HLA-peptide binding, along with high-throughput in vitro assays, with emphasis on addressing coverage of the general worldwide population. Validation can be achieved by a variety of methodologies, including determining HLA restriction and recognition in samples from volunteers convalescent from previous infections or immunized with approved or experimental vaccines, and immunophenotyping of responding T cells. The capacity of these regions to induce crossreactive T cell responses can be tested experimentally with homologous peptides derived from the various viral species of interest. Importantly, they could be considered as a component of pan-viral family vaccines. Conversely, immunogenic regions that are highly specific to a given virus could be of interest for diagnostic applications.

具有大流行潜力的病毒病原体家族中保守T细胞表位区域鉴定和验证的路线图
SARS-CoV-2大流行突出表明,整个社会需要做好准备,应对各种不同病毒家族引起的潜在大流行。在这里,我们描述了从大流行潜力病毒家族(VFPP)中鉴定和验证保守T细胞表位区域的路线图。对于每个病毒家族,我们选择一个原型病毒,其序列可用于表位鉴定筛选。所考虑的病毒科及其各自的原型(种/亚种)有冠状病毒科(严重急性呼吸综合征相关冠状病毒/ SARS-CoV-2)、黄病毒科(登革热病毒/DENV2)、托加病毒科(基孔肯雅病毒/ CHIKV)、副粘病毒科(麻疹病毒/麻疹)、沙粒病毒科(母沙粒病毒/拉沙病毒)和小核糖核酸病毒科(肠病毒C/脊髓灰质炎病毒)。然后分析每个原型病毒中编码的肽序列,以确定它们在不同病毒分类群和每个VFPP衍生的病毒变体中的保守性。我们概述了基于重叠肽和基于生物信息学的hla肽结合预测的表位发现的可用方法,以及高通量体外检测,重点关注全球一般人群的覆盖范围。验证可以通过多种方法来实现,包括确定HLA限制和识别来自先前感染或已批准或实验性疫苗免疫的康复志愿者的样本,以及应答T细胞的免疫表型。这些区域诱导交叉反应性T细胞反应的能力可以用来自不同感兴趣的病毒物种的同源肽进行实验测试。重要的是,它们可以被视为泛病毒家庭疫苗的一个组成部分。相反,对特定病毒高度特异性的免疫原性区域可能对诊断应用感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信