Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy.

IF 3.5 2区 医学 Q2 ONCOLOGY
Qi Wan, Clifford Lindsay, Chenxi Zhang, Jisoo Kim, Xin Chen, Jing Li, Raymond Y Huang, David A Reardon, Geoffrey S Young, Lei Qin
{"title":"Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy.","authors":"Qi Wan, Clifford Lindsay, Chenxi Zhang, Jisoo Kim, Xin Chen, Jing Li, Raymond Y Huang, David A Reardon, Geoffrey S Young, Lei Qin","doi":"10.1186/s40644-024-00818-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significant reproducibility issues. We compare the prediction of overall survival (OS) in recurrent high-grade glioma(HGG) patients undergoing immunotherapy, using deep learning (DL) classification networks along with radiomic signatures derived from manual and convolutional neural networks (CNN) automated segmentation.</p><p><strong>Materials and methods: </strong>We retrospectively retrieved 154 cases of recurrent HGG from multiple centers. Tumor segmentation was performed by expert radiologists and a convolutional neural network (CNN). From the segmented tumors, 2553 radiomic features were extracted for each case. A robust feature subset was selected using intraclass correlation coefficient analysis between manual and automated segmentations. The data was divided into a 9:1 ratio and validated through ten-fold cross-validation and tested on a rotating test set. Features selection was done by the Kruskal-Wallis test. The Radiomics-based OS predictions, generated using Support Vector Machine (SVM), were compared between the two segmentation approaches and against OS prediction by the CNN model adapted for classification. Model efficacy was evaluated using the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>The clinical model AUC for OS prediction was 0.640 ± 0.013 (mean ± 95% confidence interval) in the training set and 0.610 ± 0.131 in the test set. The radiomics prediction of OS based on manual segmentation outperformed automatic segmentation (AUC of 0.662 ± 0.122 vs. 0.471 ± 0.086, respectively) in the test set. Robust features improved the performance of manual segmentation to AUC of 0.700 ± 0.102, of automated segmentation to 0.554 ± 0.085. The CNN prognosis model demonstrated promising results, with an average AUC of 0.755 ± 0.071 for training sets and 0.700 ± 0.101 for the test set.</p><p><strong>Conclusion: </strong>Manual segmentation-derived radiomic features outperformed automated segmentation-derived features for predicting OS in recurrent high-grade glioma patients undergoing immunotherapy. The end-to-end CNN prognosis model performed similarly to radiomics modeling using manual-segmentation-derived features without the need for segmentation. The potential time-saving must be weighed against the lower interpretability of end-to-end black box modeling.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"5"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00818-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significant reproducibility issues. We compare the prediction of overall survival (OS) in recurrent high-grade glioma(HGG) patients undergoing immunotherapy, using deep learning (DL) classification networks along with radiomic signatures derived from manual and convolutional neural networks (CNN) automated segmentation.

Materials and methods: We retrospectively retrieved 154 cases of recurrent HGG from multiple centers. Tumor segmentation was performed by expert radiologists and a convolutional neural network (CNN). From the segmented tumors, 2553 radiomic features were extracted for each case. A robust feature subset was selected using intraclass correlation coefficient analysis between manual and automated segmentations. The data was divided into a 9:1 ratio and validated through ten-fold cross-validation and tested on a rotating test set. Features selection was done by the Kruskal-Wallis test. The Radiomics-based OS predictions, generated using Support Vector Machine (SVM), were compared between the two segmentation approaches and against OS prediction by the CNN model adapted for classification. Model efficacy was evaluated using the area under the receiver operating characteristic curve (AUC).

Results: The clinical model AUC for OS prediction was 0.640 ± 0.013 (mean ± 95% confidence interval) in the training set and 0.610 ± 0.131 in the test set. The radiomics prediction of OS based on manual segmentation outperformed automatic segmentation (AUC of 0.662 ± 0.122 vs. 0.471 ± 0.086, respectively) in the test set. Robust features improved the performance of manual segmentation to AUC of 0.700 ± 0.102, of automated segmentation to 0.554 ± 0.085. The CNN prognosis model demonstrated promising results, with an average AUC of 0.755 ± 0.071 for training sets and 0.700 ± 0.101 for the test set.

Conclusion: Manual segmentation-derived radiomic features outperformed automated segmentation-derived features for predicting OS in recurrent high-grade glioma patients undergoing immunotherapy. The end-to-end CNN prognosis model performed similarly to radiomics modeling using manual-segmentation-derived features without the need for segmentation. The potential time-saving must be weighed against the lower interpretability of end-to-end black box modeling.

深度学习和放射学特征对免疫治疗复发的高级别胶质瘤总生存期预测的比较分析。
背景:从医学图像分割中提取定量特征的放射组学分析可用于脑肿瘤患者预后的预测建模。人工分割的肿瘤成分是费时的,并提出了显著的可重复性问题。我们比较了接受免疫治疗的复发性高级别胶质瘤(HGG)患者的总生存期(OS)预测,使用深度学习(DL)分类网络以及人工和卷积神经网络(CNN)自动分割获得的放射学特征。材料和方法:我们回顾性地检索了154例来自多个中心的复发性HGG病例。肿瘤分割由放射科专家和卷积神经网络(CNN)进行。从分割的肿瘤中,每个病例提取2553个放射学特征。通过人工和自动分割的类内相关系数分析,选择了一个鲁棒的特征子集。将数据分成9:1的比例,通过10倍交叉验证进行验证,并在旋转测试集上进行测试。特征选择是通过Kruskal-Wallis测试完成的。使用支持向量机(SVM)生成的基于radiomics的OS预测在两种分割方法之间进行了比较,并与CNN模型用于分类的OS预测进行了比较。采用受试者工作特征曲线下面积(AUC)评价模型疗效。结果:临床模型预测OS的AUC在训练集为0.640±0.013(平均值±95%置信区间),在测试集为0.610±0.131。在测试集中,基于人工分割的放射组学预测OS优于自动分割(AUC分别为0.662±0.122和0.471±0.086)。鲁棒性特征将人工分割的AUC提高到0.700±0.102,自动分割的AUC提高到0.554±0.085。CNN预后模型显示出良好的结果,训练集的平均AUC为0.755±0.071,测试集的平均AUC为0.700±0.101。结论:在接受免疫治疗的复发性高级别胶质瘤患者中,人工分割衍生放射学特征在预测OS方面优于自动分割衍生特征。端到端CNN预后模型与放射组学建模类似,使用手动分割衍生的特征,无需分割。必须权衡潜在的节省时间和端到端黑盒建模较低的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信