Ronan T O'Shea, Ian Nauhaus, Xue-Xin Wei, Nicholas J Priebe
{"title":"Luminance invariant encoding in mouse primary visual cortex.","authors":"Ronan T O'Shea, Ian Nauhaus, Xue-Xin Wei, Nicholas J Priebe","doi":"10.1016/j.celrep.2024.115217","DOIUrl":null,"url":null,"abstract":"<p><p>The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies. To determine how downstream targets encode visual scenes across light levels, we measured the effects of luminance adaptation on thalamic and cortical population activity. While changes in the retinal output are evident in the lateral geniculate nucleus (LGN), selectivity in the primary visual cortex (V1) is largely invariant to the changes in luminance. We show that the visual system could maintain sensitivity across environmental conditions without altering cortical selectivity through the convergence of parallel functional pathways from the thalamus to the cortex.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115217"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115217","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies. To determine how downstream targets encode visual scenes across light levels, we measured the effects of luminance adaptation on thalamic and cortical population activity. While changes in the retinal output are evident in the lateral geniculate nucleus (LGN), selectivity in the primary visual cortex (V1) is largely invariant to the changes in luminance. We show that the visual system could maintain sensitivity across environmental conditions without altering cortical selectivity through the convergence of parallel functional pathways from the thalamus to the cortex.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.