Robert S Porter, Sojin An, Maria C Gavilan, Masayoshi Nagai, Yumie Murata-Nakamura, Bo Zhou, Katherine M Bonefas, Olivier Dionne, Jeru Manoj Manuel, Joannie St-Germain, Suzanne Gascon, Jacqueline Kim, Liam Browning, Benoit Laurent, Uhn-Soo Cho, Shigeki Iwase
{"title":"Coordinated neuron-specific splicing events restrict nucleosome engagement of the LSD1 histone demethylase complex.","authors":"Robert S Porter, Sojin An, Maria C Gavilan, Masayoshi Nagai, Yumie Murata-Nakamura, Bo Zhou, Katherine M Bonefas, Olivier Dionne, Jeru Manoj Manuel, Joannie St-Germain, Suzanne Gascon, Jacqueline Kim, Liam Browning, Benoit Laurent, Uhn-Soo Cho, Shigeki Iwase","doi":"10.1016/j.celrep.2024.115213","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A. We found that neuronal LSD1 splicing reduces the enzymes' affinity to the nucleosome. Meanwhile, neuronal PHF21A splicing significantly attenuates histone H3 binding and further ablates the DNA-binding function exerted by an AT-hook motif. Furthermore, in vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes, combined with in vivo methylation mapping, identified the neuronal complex as a hypomorphic H3K4 demethylating machinery. The neuronal PHF21A, albeit with its weaker nucleosome binding, is necessary for normal gene expression and the H3K4 landscape in the developing brain. Thus, ubiquitously expressed chromatin regulatory complexes can exert neuron-specific functions via alternative splicing of their subunits.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115213"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115213","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A. We found that neuronal LSD1 splicing reduces the enzymes' affinity to the nucleosome. Meanwhile, neuronal PHF21A splicing significantly attenuates histone H3 binding and further ablates the DNA-binding function exerted by an AT-hook motif. Furthermore, in vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes, combined with in vivo methylation mapping, identified the neuronal complex as a hypomorphic H3K4 demethylating machinery. The neuronal PHF21A, albeit with its weaker nucleosome binding, is necessary for normal gene expression and the H3K4 landscape in the developing brain. Thus, ubiquitously expressed chromatin regulatory complexes can exert neuron-specific functions via alternative splicing of their subunits.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.