Deep learning-based anterior segment identification and parameter assessment of primary angle closure disease in ultrasound biomicroscopy images.

IF 2 Q2 OPHTHALMOLOGY
Fangting Li, Xiaoyue Zhang, Kangyi Yang, Jiayin Qin, Bin Lv, Kun Lv, Yao Ma, Xingzhi Sun, Yuan Ni, Guotong Xie, Huijuan Wu
{"title":"Deep learning-based anterior segment identification and parameter assessment of primary angle closure disease in ultrasound biomicroscopy images.","authors":"Fangting Li, Xiaoyue Zhang, Kangyi Yang, Jiayin Qin, Bin Lv, Kun Lv, Yao Ma, Xingzhi Sun, Yuan Ni, Guotong Xie, Huijuan Wu","doi":"10.1136/bmjophth-2023-001600","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop an artificial intelligence algorithm to automatically identify the anterior segment structures and assess multiple parameters of primary angle closure disease (PACD) in ultrasound biomicroscopy (UBM) images.</p><p><strong>Design: </strong>Development and validation of an artificial intelligence algorithm for UBM images.</p><p><strong>Methods: </strong>2339 UBM images from 592 subjects were collected for algorithm development. A multitissue segmentation model based on deep learning was developed for automatic identification of anterior segments and localisation of scleral spur. Then, measurement of the typical angle parameters was performed from the predicted results, including angle-opening distance at 500 µm (AOD 500), trabecular-ciliary angle (TCA) and iris area. We then collected 222 UBM images from 45 subjects in two centres for model validation.</p><p><strong>Results: </strong>The multitissue identification model established in this study reached mean Intersection over Union (IoU) of 0.98, 0.98 and 0.98 on cornea segmentation, iris segmentation and ciliary body segmentation and a mean error distance of 1.07 pixels on scleral spur localisation. Our model got a mean IoU of 0.98, 0.98 and 0.99 on cornea segmentation, iris segmentation and ciliary body segmentation and a mean error distance of 0.49 pixels on scleral spur localisation in open-angle images and received 0.98, 0.98, 0.978 and 1.42 pixels respectively in angle-closure images. The mean differences between automatic and manual measurement of the angle parameters were 3.07 μm of AOD, 3.34 degrees of TCA and 0.05 mm<sup>2</sup> of iris area.</p><p><strong>Conclusions: </strong>The automatic method of multitissue identification for PACD eyes developed was feasible, and the automatic measurement of angle parameters was reliable.</p>","PeriodicalId":9286,"journal":{"name":"BMJ Open Ophthalmology","volume":"10 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752007/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjophth-2023-001600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop an artificial intelligence algorithm to automatically identify the anterior segment structures and assess multiple parameters of primary angle closure disease (PACD) in ultrasound biomicroscopy (UBM) images.

Design: Development and validation of an artificial intelligence algorithm for UBM images.

Methods: 2339 UBM images from 592 subjects were collected for algorithm development. A multitissue segmentation model based on deep learning was developed for automatic identification of anterior segments and localisation of scleral spur. Then, measurement of the typical angle parameters was performed from the predicted results, including angle-opening distance at 500 µm (AOD 500), trabecular-ciliary angle (TCA) and iris area. We then collected 222 UBM images from 45 subjects in two centres for model validation.

Results: The multitissue identification model established in this study reached mean Intersection over Union (IoU) of 0.98, 0.98 and 0.98 on cornea segmentation, iris segmentation and ciliary body segmentation and a mean error distance of 1.07 pixels on scleral spur localisation. Our model got a mean IoU of 0.98, 0.98 and 0.99 on cornea segmentation, iris segmentation and ciliary body segmentation and a mean error distance of 0.49 pixels on scleral spur localisation in open-angle images and received 0.98, 0.98, 0.978 and 1.42 pixels respectively in angle-closure images. The mean differences between automatic and manual measurement of the angle parameters were 3.07 μm of AOD, 3.34 degrees of TCA and 0.05 mm2 of iris area.

Conclusions: The automatic method of multitissue identification for PACD eyes developed was feasible, and the automatic measurement of angle parameters was reliable.

基于深度学习的超声生物显微图像原发性闭角病前段识别及参数评估。
目的:开发一种人工智能算法,用于超声生物显微镜(UBM)图像中原发性闭角病(PACD)前段结构的自动识别和多参数评估。设计:开发和验证UBM图像的人工智能算法。方法:收集592名受试者的2339张UBM图像进行算法开发。提出了一种基于深度学习的多组织分割模型,用于巩膜骨刺的自动识别和定位。然后,根据预测结果测量典型角度参数,包括500µm开角距离(AOD 500)、小梁-睫状角(TCA)和虹膜面积。然后,我们从两个中心的45名受试者中收集了222张UBM图像进行模型验证。结果:本研究建立的多组织识别模型在角膜分割、虹膜分割和睫状体分割上的平均IoU分别为0.98、0.98和0.98,在巩膜骨刺定位上的平均误差距离为1.07像素。我们的模型在角膜分割、虹膜分割和睫状体分割上的平均IoU分别为0.98、0.98和0.99,在开角图像上巩膜骨刺定位的平均误差距离为0.49像素,在闭角图像上的平均误差距离分别为0.98、0.98、0.978和1.42像素。自动与手动测量角度参数的平均差值分别为AOD 3.07 μm、TCA 3.34°和虹膜面积0.05 mm2。结论:建立的PACD眼多组织自动识别方法是可行的,自动测量角度参数是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMJ Open Ophthalmology
BMJ Open Ophthalmology OPHTHALMOLOGY-
CiteScore
3.40
自引率
4.20%
发文量
104
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信