Meghamala Sinha, Perry Haaland, Ashok Krishnamurthy, Bo Lan, Stephen A Ramsey, Patrick L Schmitt, Priya Sharma, Hao Xu, Karamarie Fecho
{"title":"Causal analysis for multivariate integrated clinical and environmental exposures data.","authors":"Meghamala Sinha, Perry Haaland, Ashok Krishnamurthy, Bo Lan, Stephen A Ramsey, Patrick L Schmitt, Priya Sharma, Hao Xu, Karamarie Fecho","doi":"10.1186/s12911-025-02849-4","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHRs) provide a rich source of observational patient data that can be explored to infer underlying causal relationships. These causal relationships can be applied to augment medical decision-making or suggest hypotheses for healthcare research. In this study, we explored a large-scale EHR dataset on patients with asthma or related conditions (N = 14,937). The dataset included integrated data on features representing demographic factors, clinical measures, and environmental exposures. The data were accessed via a service named the Integrated Clinical and Environmental Service (ICEES). We estimated underlying causal relationships from the data to identify significant predictors of asthma attacks. We also performed simulated interventions on the inferred causal network to detect the causal effects, in terms of shifts in probability distribution for asthma attacks.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"27"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02849-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic health records (EHRs) provide a rich source of observational patient data that can be explored to infer underlying causal relationships. These causal relationships can be applied to augment medical decision-making or suggest hypotheses for healthcare research. In this study, we explored a large-scale EHR dataset on patients with asthma or related conditions (N = 14,937). The dataset included integrated data on features representing demographic factors, clinical measures, and environmental exposures. The data were accessed via a service named the Integrated Clinical and Environmental Service (ICEES). We estimated underlying causal relationships from the data to identify significant predictors of asthma attacks. We also performed simulated interventions on the inferred causal network to detect the causal effects, in terms of shifts in probability distribution for asthma attacks.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.