{"title":"Brain computer interfaces for cognitive enhancement in older people - challenges and applications: a systematic review.","authors":"Ping-Chen Tsai, Asangaedem Akpan, Kea-Tiong Tang, Heba Lakany","doi":"10.1186/s12877-025-05676-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain-computer interface (BCI) offers promising solutions to cognitive enhancement in older people. Despite the clear progress received, there is limited evidence of BCI implementation for rehabilitation. This systematic review addresses BCI applications and challenges in the standard practice of EEG-based neurofeedback (NF) training in healthy older people or older people with mild cognitive impairment (MCI).</p><p><strong>Methods: </strong>Articles were searched via MEDLINE, PubMed, SCOPUS, SpringerLink, and Web of Science. 16 studies between 1st January 2010 to 1st November 2024 are included after screening using PRISMA. The risk of bias, system design, and neurofeedback protocols are reviewed.</p><p><strong>Results: </strong>The successful BCI applications in NF trials in older people were biased by the randomisation process and outcome measurement. Although the studies demonstrate promising results in effectiveness of research-grade BCI for cognitive enhancement in older people, it is premature to make definitive claims about widespread BCI usability and applicability.</p><p><strong>Significance: </strong>This review highlights the common issues in the field of EEG-based BCI for older people. Future BCI research could focus on trial design and BCI performance gaps between the old and the young to develop a robust BCI system that compensates for age-related declines in cognitive and motor functions.</p>","PeriodicalId":9056,"journal":{"name":"BMC Geriatrics","volume":"25 1","pages":"36"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Geriatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12877-025-05676-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Brain-computer interface (BCI) offers promising solutions to cognitive enhancement in older people. Despite the clear progress received, there is limited evidence of BCI implementation for rehabilitation. This systematic review addresses BCI applications and challenges in the standard practice of EEG-based neurofeedback (NF) training in healthy older people or older people with mild cognitive impairment (MCI).
Methods: Articles were searched via MEDLINE, PubMed, SCOPUS, SpringerLink, and Web of Science. 16 studies between 1st January 2010 to 1st November 2024 are included after screening using PRISMA. The risk of bias, system design, and neurofeedback protocols are reviewed.
Results: The successful BCI applications in NF trials in older people were biased by the randomisation process and outcome measurement. Although the studies demonstrate promising results in effectiveness of research-grade BCI for cognitive enhancement in older people, it is premature to make definitive claims about widespread BCI usability and applicability.
Significance: This review highlights the common issues in the field of EEG-based BCI for older people. Future BCI research could focus on trial design and BCI performance gaps between the old and the young to develop a robust BCI system that compensates for age-related declines in cognitive and motor functions.
期刊介绍:
BMC Geriatrics is an open access journal publishing original peer-reviewed research articles in all aspects of the health and healthcare of older people, including the effects of healthcare systems and policies. The journal also welcomes research focused on the aging process, including cellular, genetic, and physiological processes and cognitive modifications.