Michael J Simpson, Damien Gatinel, Miguel Faria-Ribeiro, Xin Wei, Geunyoung Yoon, Junzhong Liang, Pablo Artal, Susana Marcos
{"title":"Design concepts for advanced-technology intraocular lenses [Invited].","authors":"Michael J Simpson, Damien Gatinel, Miguel Faria-Ribeiro, Xin Wei, Geunyoung Yoon, Junzhong Liang, Pablo Artal, Susana Marcos","doi":"10.1364/BOE.544647","DOIUrl":null,"url":null,"abstract":"<p><p>An intraocular lens (IOL) replaces the natural crystalline lens during cataract surgery, and although the vast majority of implants have simple optics, \"advanced technology\" IOLs have multifocal and extended depth of focus (EDOF) properties. Optical concepts are evaluated here, with image contrast, focal range, and unwanted visual phenomena being the primary concerns. Visual phenomena with earlier bifocal diffractive lenses led to alternative diffractive designs (trifocals, etc.) and also to exploring increasing the depth of focus for monofocal IOLs using refractive methods, where although the defocus range might be more modest, visual phenomena are much less obvious. The designs cover a range of possibilities that might provide the best overall vision for patients with differing motivations, needs, and sensitivity to visual side effects.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 1","pages":"334-361"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.544647","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
An intraocular lens (IOL) replaces the natural crystalline lens during cataract surgery, and although the vast majority of implants have simple optics, "advanced technology" IOLs have multifocal and extended depth of focus (EDOF) properties. Optical concepts are evaluated here, with image contrast, focal range, and unwanted visual phenomena being the primary concerns. Visual phenomena with earlier bifocal diffractive lenses led to alternative diffractive designs (trifocals, etc.) and also to exploring increasing the depth of focus for monofocal IOLs using refractive methods, where although the defocus range might be more modest, visual phenomena are much less obvious. The designs cover a range of possibilities that might provide the best overall vision for patients with differing motivations, needs, and sensitivity to visual side effects.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.