{"title":"The fluoroquinolone compounds potentiate the antifungal activity of the echinocandins against Aspergillus fumigatus.","authors":"Jin-Ju Choi, Suzie Kang, Yoonseo Lee, Dong-Hyun Lee, Yuju Jang, Ja-Il Goo, Yongseok Choi, Dongho Lee, Cheol-Won Yun","doi":"10.1042/BSR20250001","DOIUrl":null,"url":null,"abstract":"<p><p>The antifungal drugs of the echinocandin family show high efficacy against Aspergillus fumigatus. However, their paradoxical effect, which restores fungal growth at high drug concentrations, and the emergence of resistant strains necessitate improvements. We identified 13 fluoroquinolone compounds from a chemical library containing 10,000 compounds that potentiate the antifungal activity of caspofungin. Among them, NE-E07 significantly enhanced the efficacy of echinocandins against A. fumigatus, including resistant strains, without potentiating other antifungal families like voriconazole or amphotericin B. Specifically, NE-E07 demonstrated a unique ability to potentiate caspofungin's activity against the echinocandin-resistant strain USHM-M0051 isolated from patients. Our experiments revealed that NE-E07, in combination with caspofungin, affected ergosterol biosynthesis in a manner consistent with azole drugs. Docking tests suggest that NE-E07 has a high binding affinity with CYP51, which affects ergosterol biosynthesis similarly to azole drugs. Interestingly, known fluoroquinolones like ciprofloxacin, nalidixic acid, and norfloxacin did not show this potentiating effect, suggesting that NE-E07's unique structure is critical for its activity. Moreover, NE-E07 did not enhance echinocandin activity against Candida albicans or Cryptococcus neoformans, highlighting its specific action against A. fumigatus. In vivo studies demonstrated that co-treatment with NE-E07 and caspofungin increased the survival rate of mice infected with A. fumigatus. This significant improvement in survival underscores the potential clinical relevance of NE-E07 as a co-administered drug with echinocandins for treating fungal infections, particularly those resistant to echinocandins.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20250001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The antifungal drugs of the echinocandin family show high efficacy against Aspergillus fumigatus. However, their paradoxical effect, which restores fungal growth at high drug concentrations, and the emergence of resistant strains necessitate improvements. We identified 13 fluoroquinolone compounds from a chemical library containing 10,000 compounds that potentiate the antifungal activity of caspofungin. Among them, NE-E07 significantly enhanced the efficacy of echinocandins against A. fumigatus, including resistant strains, without potentiating other antifungal families like voriconazole or amphotericin B. Specifically, NE-E07 demonstrated a unique ability to potentiate caspofungin's activity against the echinocandin-resistant strain USHM-M0051 isolated from patients. Our experiments revealed that NE-E07, in combination with caspofungin, affected ergosterol biosynthesis in a manner consistent with azole drugs. Docking tests suggest that NE-E07 has a high binding affinity with CYP51, which affects ergosterol biosynthesis similarly to azole drugs. Interestingly, known fluoroquinolones like ciprofloxacin, nalidixic acid, and norfloxacin did not show this potentiating effect, suggesting that NE-E07's unique structure is critical for its activity. Moreover, NE-E07 did not enhance echinocandin activity against Candida albicans or Cryptococcus neoformans, highlighting its specific action against A. fumigatus. In vivo studies demonstrated that co-treatment with NE-E07 and caspofungin increased the survival rate of mice infected with A. fumigatus. This significant improvement in survival underscores the potential clinical relevance of NE-E07 as a co-administered drug with echinocandins for treating fungal infections, particularly those resistant to echinocandins.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics