Quantifying UV-induced photodamage for longitudinal live-cell imaging applications of deep-UV microscopy.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-12-19 eCollection Date: 2025-01-01 DOI:10.1364/BOE.544778
Viswanath Gorti, Kaitlyn McCubbins, Daniel Houston, Aaron D Silva Trenkle, Abigail Holberton, Caroline E Serafini, Levi Wood, Gabriel Kwong, Francisco E Robles
{"title":"Quantifying UV-induced photodamage for longitudinal live-cell imaging applications of deep-UV microscopy.","authors":"Viswanath Gorti, Kaitlyn McCubbins, Daniel Houston, Aaron D Silva Trenkle, Abigail Holberton, Caroline E Serafini, Levi Wood, Gabriel Kwong, Francisco E Robles","doi":"10.1364/BOE.544778","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies. Here, we quantify UV phototoxicity with several cell types at notable UV wavelengths. We find that the fluence required for cell death via UV phototoxicity with continuous UV exposure varies with cell type and wavelength from ∼0.5µJ/µm<sup>2</sup> to 2µJ/µm<sup>2</sup>, but is independent of typical illumination power/radiant flux of UV microscopy (e.g., 0.1-20 nW/µm<sup>2</sup>). We also show results from fractionation studies that reveal cell repair following UV exposure, which increases the tolerance to UV radiation by a factor of 2 or more, depending on the fractionation paradigm. Results further show that UV tolerance exceeds ANSI guidelines for maximum permissible exposure. Finally, we calculate imaging limits for a typical application of UV microscopy, such as hematology analysis. Together, this work provides UV fluence thresholds that can serve as guidelines for nondestructive, longitudinal, and dynamic deep-UV microscopy experiments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 1","pages":"208-221"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.544778","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies. Here, we quantify UV phototoxicity with several cell types at notable UV wavelengths. We find that the fluence required for cell death via UV phototoxicity with continuous UV exposure varies with cell type and wavelength from ∼0.5µJ/µm2 to 2µJ/µm2, but is independent of typical illumination power/radiant flux of UV microscopy (e.g., 0.1-20 nW/µm2). We also show results from fractionation studies that reveal cell repair following UV exposure, which increases the tolerance to UV radiation by a factor of 2 or more, depending on the fractionation paradigm. Results further show that UV tolerance exceeds ANSI guidelines for maximum permissible exposure. Finally, we calculate imaging limits for a typical application of UV microscopy, such as hematology analysis. Together, this work provides UV fluence thresholds that can serve as guidelines for nondestructive, longitudinal, and dynamic deep-UV microscopy experiments.

定量紫外光诱导的纵向活细胞成像应用深紫外光显微镜。
深紫外显微镜通过利用紫外光谱中的生物分子吸收特性,实现高分辨率,无标记的分子成像。紫外成像硬件的最新进展重新激起了人们对该技术定量活细胞成像应用的兴趣。然而,紫外线引起的光损伤仍然是纵向动态成像研究关注的问题。在这里,我们量化了几种细胞类型在显著的紫外线波长下的紫外线光毒性。我们发现,在持续的紫外线照射下,通过紫外线光毒性导致细胞死亡所需的能量随细胞类型和波长而变化,范围从0.5µJ/µm2到2µJ/µm2,但与典型的紫外线显微镜照明功率/辐射通量(例如,0.1-20 nW/µm2)无关。我们还展示了分离研究的结果,揭示了紫外线照射后的细胞修复,根据分离范例,细胞对紫外线的耐受性增加了2倍或更多。结果进一步表明,紫外线耐受性超过了美国国家标准协会的最大允许暴露准则。最后,我们计算了典型应用紫外显微镜的成像极限,如血液学分析。总之,这项工作提供了紫外线通量阈值,可以作为非破坏性,纵向和动态深紫外显微镜实验的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信