Viswanath Gorti, Kaitlyn McCubbins, Daniel Houston, Aaron D Silva Trenkle, Abigail Holberton, Caroline E Serafini, Levi Wood, Gabriel Kwong, Francisco E Robles
{"title":"Quantifying UV-induced photodamage for longitudinal live-cell imaging applications of deep-UV microscopy.","authors":"Viswanath Gorti, Kaitlyn McCubbins, Daniel Houston, Aaron D Silva Trenkle, Abigail Holberton, Caroline E Serafini, Levi Wood, Gabriel Kwong, Francisco E Robles","doi":"10.1364/BOE.544778","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies. Here, we quantify UV phototoxicity with several cell types at notable UV wavelengths. We find that the fluence required for cell death via UV phototoxicity with continuous UV exposure varies with cell type and wavelength from ∼0.5µJ/µm<sup>2</sup> to 2µJ/µm<sup>2</sup>, but is independent of typical illumination power/radiant flux of UV microscopy (e.g., 0.1-20 nW/µm<sup>2</sup>). We also show results from fractionation studies that reveal cell repair following UV exposure, which increases the tolerance to UV radiation by a factor of 2 or more, depending on the fractionation paradigm. Results further show that UV tolerance exceeds ANSI guidelines for maximum permissible exposure. Finally, we calculate imaging limits for a typical application of UV microscopy, such as hematology analysis. Together, this work provides UV fluence thresholds that can serve as guidelines for nondestructive, longitudinal, and dynamic deep-UV microscopy experiments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 1","pages":"208-221"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.544778","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep-UV microscopy enables high-resolution, label-free molecular imaging by leveraging biomolecular absorption properties in the UV spectrum. Recent advances in UV-imaging hardware have renewed interest in this technique for quantitative live cell imaging applications. However, UV-induced photodamage remains a concern for longitudinal dynamic imaging studies. Here, we quantify UV phototoxicity with several cell types at notable UV wavelengths. We find that the fluence required for cell death via UV phototoxicity with continuous UV exposure varies with cell type and wavelength from ∼0.5µJ/µm2 to 2µJ/µm2, but is independent of typical illumination power/radiant flux of UV microscopy (e.g., 0.1-20 nW/µm2). We also show results from fractionation studies that reveal cell repair following UV exposure, which increases the tolerance to UV radiation by a factor of 2 or more, depending on the fractionation paradigm. Results further show that UV tolerance exceeds ANSI guidelines for maximum permissible exposure. Finally, we calculate imaging limits for a typical application of UV microscopy, such as hematology analysis. Together, this work provides UV fluence thresholds that can serve as guidelines for nondestructive, longitudinal, and dynamic deep-UV microscopy experiments.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.