{"title":"Enhanced accuracy and stability in automated intra-pancreatic fat deposition monitoring of type 2 diabetes mellitus using Dixon MRI and deep learning.","authors":"Zhongxian Pan, Qiuyi Chen, Haiwei Lin, Wensheng Huang, Junfeng Li, Fanqi Meng, Zhangnan Zhong, Wenxi Liu, Zhujing Li, Haodong Qin, Bingsheng Huang, Yueyao Chen","doi":"10.1007/s00261-025-04804-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.</p><p><strong>Materials and methods: </strong>In this retrospective study, 534 patients from two centers who underwent upper abdomen MRI and completed multi-echo and double-echo Dixon MRI were included. A pancreatic segmentation model was trained on double-echo Dixon water images using nnU-Net. Predicted masks were registered to the proton density fat fraction (PDFF) maps of the multi-echo Dixon sequence. Deep semantic segmentation feature-based radiomics (DSFR) and radiomics features were separately extracted on the PDFF maps and modeled using the support vector machine method with 5-fold cross-validation. The first deep learning radiomics (DLR) model was constructed to distinguish T2DM from non-diabetes and pre-diabetes by averaging the output scores of the DSFR and radiomics models. The second DLR model was then developed to distinguish pre-diabetes from non-diabetes. Two radiologist models were constructed based on the mean PDFF of three pancreatic regions of interest.</p><p><strong>Results: </strong>The mean Dice similarity coefficient for pancreas segmentation was 0.958 in the total test cohort. The AUCs of the DLR and two radiologist models in distinguishing T2DM from non-diabetes and pre-diabetes were 0.868, 0.760, and 0.782 in the training cohort, and 0.741, 0.724, and 0.653 in the external test cohort, respectively. For distinguishing pre-diabetes from non-diabetes, the AUCs were 0.881, 0.688, and 0.688 in the training cohort, which included data combined from both centers. Testing was not conducted due to limited pre-diabetic patients. Intraclass correlation coefficients between radiologists' pancreatic PDFF measurements were 0.800 and 0.699 at two centers, suggesting good and moderate reproducibility, respectively.</p><p><strong>Conclusion: </strong>The DLR model demonstrated superior performance over radiologists, providing a more efficient, accurate and stable method for monitoring IPFD and predicting the risk of T2DM and pre-diabetes. This enables IPFD assessment to potentially serve as an early biomarker for T2DM, providing richer clinical information for disease progression and management.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":"3685-3697"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04804-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.
Materials and methods: In this retrospective study, 534 patients from two centers who underwent upper abdomen MRI and completed multi-echo and double-echo Dixon MRI were included. A pancreatic segmentation model was trained on double-echo Dixon water images using nnU-Net. Predicted masks were registered to the proton density fat fraction (PDFF) maps of the multi-echo Dixon sequence. Deep semantic segmentation feature-based radiomics (DSFR) and radiomics features were separately extracted on the PDFF maps and modeled using the support vector machine method with 5-fold cross-validation. The first deep learning radiomics (DLR) model was constructed to distinguish T2DM from non-diabetes and pre-diabetes by averaging the output scores of the DSFR and radiomics models. The second DLR model was then developed to distinguish pre-diabetes from non-diabetes. Two radiologist models were constructed based on the mean PDFF of three pancreatic regions of interest.
Results: The mean Dice similarity coefficient for pancreas segmentation was 0.958 in the total test cohort. The AUCs of the DLR and two radiologist models in distinguishing T2DM from non-diabetes and pre-diabetes were 0.868, 0.760, and 0.782 in the training cohort, and 0.741, 0.724, and 0.653 in the external test cohort, respectively. For distinguishing pre-diabetes from non-diabetes, the AUCs were 0.881, 0.688, and 0.688 in the training cohort, which included data combined from both centers. Testing was not conducted due to limited pre-diabetic patients. Intraclass correlation coefficients between radiologists' pancreatic PDFF measurements were 0.800 and 0.699 at two centers, suggesting good and moderate reproducibility, respectively.
Conclusion: The DLR model demonstrated superior performance over radiologists, providing a more efficient, accurate and stable method for monitoring IPFD and predicting the risk of T2DM and pre-diabetes. This enables IPFD assessment to potentially serve as an early biomarker for T2DM, providing richer clinical information for disease progression and management.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits