Marcela Robles-Machuca, Tania Diaz-Vidal, M Angeles Camacho-Ruiz, Raúl B Martínez-Pérez, Martha Martin Del Campo, Juan Carlos Mateos-Díaz, Jorge A Rodríguez
{"title":"Further Characterization of Lipase B from Ustilago maydis Expressed in Pichia pastoris: a Member of the Candida antarctica Lipase B-like Superfamily.","authors":"Marcela Robles-Machuca, Tania Diaz-Vidal, M Angeles Camacho-Ruiz, Raúl B Martínez-Pérez, Martha Martin Del Campo, Juan Carlos Mateos-Díaz, Jorge A Rodríguez","doi":"10.1007/s12010-024-05166-0","DOIUrl":null,"url":null,"abstract":"<p><p>Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C. antarctica (rCALB). Biochemical analyses included evaluations of optimal pH, temperature, triglyceride (TG) preference for short- and medium-chain acyl groups, phospholipase and amidase activities, enantiopreference, thermostability, stability in organic solvents, and response to NaCl concentrations. rUMLB, a glycosylated enzyme with a molecular weight of 38.6 kDa, exhibited cold-active behavior at 0 °C and preferred hydrolysis of partially soluble short-chain fatty acid TGs, like rCALB. In addition, rUMLB was also capable of hydrolyzing insoluble long-chain triglycerides like rCALB. The half-life at 50 °C for rCALB was approximately 1.6 times greater than that of UMLB, which has fewer surface-exposed proline residues. Both enzymes displayed strong (R)-enantiopreference on (R)-glycidyl butyrate, (R)-ethyl hydroxy butyrate, and (R)-methyl hydroxy valerate enantiomers with increased activity in non-polar solvents. However, rUMLB was more sensitive to polar solvents. Notably, rUMLB was activated at high NaCl concentrations, as previously reported for rCALB. rUMLB showed amidase activity on capsaicinoids similar to rCALB; however, rUMLB uniquely demonstrated significant phospholipase activity toward natural phospholipids, a feature not observed in rCALB. The analysis of the cavity adjacent to the active site in the UMLB model and CALB structure revealed slightly larger area, volume, and hydrophobicity values for UMLB. These comparative insights highlight the functional diversity within the CALB-type lipase family, underscoring the potential of UMLB as a versatile biocatalyst and providing valuable information for biotechnological applications and for understanding enzyme structure-function relationships within the CALB superfamily.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05166-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C. antarctica (rCALB). Biochemical analyses included evaluations of optimal pH, temperature, triglyceride (TG) preference for short- and medium-chain acyl groups, phospholipase and amidase activities, enantiopreference, thermostability, stability in organic solvents, and response to NaCl concentrations. rUMLB, a glycosylated enzyme with a molecular weight of 38.6 kDa, exhibited cold-active behavior at 0 °C and preferred hydrolysis of partially soluble short-chain fatty acid TGs, like rCALB. In addition, rUMLB was also capable of hydrolyzing insoluble long-chain triglycerides like rCALB. The half-life at 50 °C for rCALB was approximately 1.6 times greater than that of UMLB, which has fewer surface-exposed proline residues. Both enzymes displayed strong (R)-enantiopreference on (R)-glycidyl butyrate, (R)-ethyl hydroxy butyrate, and (R)-methyl hydroxy valerate enantiomers with increased activity in non-polar solvents. However, rUMLB was more sensitive to polar solvents. Notably, rUMLB was activated at high NaCl concentrations, as previously reported for rCALB. rUMLB showed amidase activity on capsaicinoids similar to rCALB; however, rUMLB uniquely demonstrated significant phospholipase activity toward natural phospholipids, a feature not observed in rCALB. The analysis of the cavity adjacent to the active site in the UMLB model and CALB structure revealed slightly larger area, volume, and hydrophobicity values for UMLB. These comparative insights highlight the functional diversity within the CALB-type lipase family, underscoring the potential of UMLB as a versatile biocatalyst and providing valuable information for biotechnological applications and for understanding enzyme structure-function relationships within the CALB superfamily.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.