Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30 kDa membrane protein GlpG.

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Carl Öster, Veniamin Chevelkov, Adam Lange
{"title":"Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30 kDa membrane protein GlpG.","authors":"Carl Öster, Veniamin Chevelkov, Adam Lange","doi":"10.1007/s10858-024-00454-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire <sup>1</sup>H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts. Drawing inspiration from sensitivity-enhanced TOCSY experiments in solution NMR, we have explored the potential of <sup>13</sup>C- <sup>13</sup>C TOCSY mixing as a viable option for triple sensitivity-enhanced 4D experiments aimed at side-chain assignments in solid-state NMR. Through simulations and experimental trials, we have identified optimal conditions to achieve uniform transfer efficiency for both transverse components and to minimize undesired cross-transfers. Our experiments, conducted on the 30 kDa membrane protein GlpG embedded in E. coli liposomes, have demonstrated enhanced sensitivity compared to the most effective dipolar and J-coupling-based <sup>13</sup>C- <sup>13</sup>C mixing sequences. Notably, a non-uniformly sampled 4D hCXCANH spectrum with exceptionally high sensitivity was obtained in just a few days using a 600 MHz spectrometer equipped with a 1.3 mm probe operating at a magic angle spinning rate of 55 kHz.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00454-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire 1H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts. Drawing inspiration from sensitivity-enhanced TOCSY experiments in solution NMR, we have explored the potential of 13C- 13C TOCSY mixing as a viable option for triple sensitivity-enhanced 4D experiments aimed at side-chain assignments in solid-state NMR. Through simulations and experimental trials, we have identified optimal conditions to achieve uniform transfer efficiency for both transverse components and to minimize undesired cross-transfers. Our experiments, conducted on the 30 kDa membrane protein GlpG embedded in E. coli liposomes, have demonstrated enhanced sensitivity compared to the most effective dipolar and J-coupling-based 13C- 13C mixing sequences. Notably, a non-uniformly sampled 4D hCXCANH spectrum with exceptionally high sensitivity was obtained in just a few days using a 600 MHz spectrometer equipped with a 1.3 mm probe operating at a magic angle spinning rate of 55 kHz.

固体核磁共振中TOCSY混合灵敏度增强的评价以及全长30kda膜蛋白GlpG侧链配位的4D实验应用。
固体核磁共振实验对大膜蛋白的化学位移赋值具有挑战性。灵敏度增强脉冲序列的最新进展,使得在合理的时间范围内获得这些具有挑战性的蛋白质样品的1h检测四维光谱成为可能。然而,如果没有侧链化学位移,获得明确的赋值仍然是困难的。从溶液核磁共振中灵敏度增强的TOCSY实验中获得灵感,我们探索了13C- 13C TOCSY混合的潜力,作为固态核磁共振中针对侧链分配的三重灵敏度增强4D实验的可行选择。通过模拟和实验试验,我们已经确定了最佳条件,以实现横向组件的均匀传递效率,并最大限度地减少不必要的交叉传递。我们对嵌入大肠杆菌脂质体的30 kDa膜蛋白GlpG进行的实验表明,与最有效的偶极和基于j偶联的13C- 13C混合序列相比,灵敏度更高。值得注意的是,使用600 MHz光谱仪,配备1.3 mm探针,在55 kHz的魔角旋转速率下工作,在短短几天内获得了非均匀采样的4D hCXCANH光谱,具有极高的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信