{"title":"Gastrodin Alleviates Lumbar Intervertebral Disc Degeneration by Suppressing the NF-κB and MAPK Pathways.","authors":"Huimin Hu, Tian Xie","doi":"10.1007/s12013-024-01612-2","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) is the main pathological factor resulting in low back pain (LBP), the leading cause of disability globally. Inflammatory response and extracellular matrix (ECM) degradation are critical pathological features in the development of IDD. Gastrodin (GAS), a phenol compound isolated from Gastrodia elata Blume, plays an anti-inflammatory role in experimental models of multiple human diseases. Our study aimed to elucidate whether GAS alleviates TNF-α-induced inflammation in nucleus pulposus (NP) cells and IDD in vivo. The cytotoxicity of GAS was assessed by CCK-8 assay. Rat primary NP cells were stimulated with TNF-α to induce inflammatory response. The expression of proinflammatory cytokines, catabolic genes, and anabolic genes was detected by RT-qPCR, western blotting, and immunofluorescence staining. NF-κB and MAPK pathway activation was determined through western blotting and immunofluorescence staining. The IDD rat model was established by using percutaneous needle puncture. The therapeutic effects of GAS were confirmed by histology analysis. We found that TNF-α stimulation enhanced proinflammatory cytokine (COX2, iNOS, IL-6, and IL-1β) expression in NP cells, which was reversed by GAS treatment. GAS offset TNF-α-induced upregulation in catabolic gene (MMP3, MMP9, and MMP13) expression and downregulation in anabolic gene (Collagen II, SOX9, and Aggrecan) expression. The loss of ECM in TNF-α-treated NP cells was mitigated by GAS treatment. Mechanically, GAS abolished TNF-α-induced increase in p-IKKα, p-IKKβ, p-IκBα, p-p65, p-ERK, p-p38, and p-JNK protein levels in NP cells. In puncture-induced IDD rat models, GAS administration improved intervertebral disc (IVD) structure, increased Collagen II expression, and reduced the levels of proinflammatory factors in IVDs. Overall, GAS alleviates the inflammation and ECM degradation in NP cells via inhibiting NF-κB and MAPK pathway activation and alleviates IDD in vivo, which may be a novel treatment strategy for IDD.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01612-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intervertebral disc degeneration (IDD) is the main pathological factor resulting in low back pain (LBP), the leading cause of disability globally. Inflammatory response and extracellular matrix (ECM) degradation are critical pathological features in the development of IDD. Gastrodin (GAS), a phenol compound isolated from Gastrodia elata Blume, plays an anti-inflammatory role in experimental models of multiple human diseases. Our study aimed to elucidate whether GAS alleviates TNF-α-induced inflammation in nucleus pulposus (NP) cells and IDD in vivo. The cytotoxicity of GAS was assessed by CCK-8 assay. Rat primary NP cells were stimulated with TNF-α to induce inflammatory response. The expression of proinflammatory cytokines, catabolic genes, and anabolic genes was detected by RT-qPCR, western blotting, and immunofluorescence staining. NF-κB and MAPK pathway activation was determined through western blotting and immunofluorescence staining. The IDD rat model was established by using percutaneous needle puncture. The therapeutic effects of GAS were confirmed by histology analysis. We found that TNF-α stimulation enhanced proinflammatory cytokine (COX2, iNOS, IL-6, and IL-1β) expression in NP cells, which was reversed by GAS treatment. GAS offset TNF-α-induced upregulation in catabolic gene (MMP3, MMP9, and MMP13) expression and downregulation in anabolic gene (Collagen II, SOX9, and Aggrecan) expression. The loss of ECM in TNF-α-treated NP cells was mitigated by GAS treatment. Mechanically, GAS abolished TNF-α-induced increase in p-IKKα, p-IKKβ, p-IκBα, p-p65, p-ERK, p-p38, and p-JNK protein levels in NP cells. In puncture-induced IDD rat models, GAS administration improved intervertebral disc (IVD) structure, increased Collagen II expression, and reduced the levels of proinflammatory factors in IVDs. Overall, GAS alleviates the inflammation and ECM degradation in NP cells via inhibiting NF-κB and MAPK pathway activation and alleviates IDD in vivo, which may be a novel treatment strategy for IDD.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.