Study of the interaction between alkaline phosphatase and biomacromolecule substrates.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Yanan Li, Rong Chen, Yidi Wang, Xin Guo, Xiaojing Lin, Li Tong, Dong Yang, Yanxia Yin, Jing Luo
{"title":"Study of the interaction between alkaline phosphatase and biomacromolecule substrates.","authors":"Yanan Li, Rong Chen, Yidi Wang, Xin Guo, Xiaojing Lin, Li Tong, Dong Yang, Yanxia Yin, Jing Luo","doi":"10.1007/s00216-025-05740-3","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids. However, no detailed reports on the interactions between ALP and these biomolecules have been published. We used microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) experiments to investigate the affinity of mutant ALP (S102L) from Escherichia coli for biomacromolecule substrates, including double-stranded DNA (dsDNA) and phosphoproteins. We found that S102L ALP has a strong affinity for dsDNA and β-casein. For the first time, the affinity of ALP for the substrate phosphate monoester has been proven to be significantly affected by the nature of its R group (ROP). In summary, we have explained the key factors involved in the interaction between ALP and biomacromolecule substrates from the perspective of affinity, which provides guidance in better understanding ALP.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05740-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids. However, no detailed reports on the interactions between ALP and these biomolecules have been published. We used microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) experiments to investigate the affinity of mutant ALP (S102L) from Escherichia coli for biomacromolecule substrates, including double-stranded DNA (dsDNA) and phosphoproteins. We found that S102L ALP has a strong affinity for dsDNA and β-casein. For the first time, the affinity of ALP for the substrate phosphate monoester has been proven to be significantly affected by the nature of its R group (ROP). In summary, we have explained the key factors involved in the interaction between ALP and biomacromolecule substrates from the perspective of affinity, which provides guidance in better understanding ALP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信