Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Jizhao Zhang, Qiang Zhao
{"title":"Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch.","authors":"Jizhao Zhang, Qiang Zhao","doi":"10.1007/s00216-025-05733-2","DOIUrl":null,"url":null,"abstract":"<p><p>Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety. Among various analytical methods, aptamer-based biosensors exhibit great potentials for CAP detection. Here, we developed an aptamer-based biosensor for rapid fluorescence detection of CAP based on pyrene excimer switch by using a newly selected short DNA aptamer with high affinity. The aptamer was labeled with pyrene molecules at both ends. The binding of CAP to the aptamer probe caused two pyrene molecules close to each other and the formation of a pyrene excimer, which induced the increase of the fluorescence signal from the pyrene excimer. CAP detection was achieved by measuring the fluorescence signal changes of the aptamer probes with dual pyrene labels. Under optimized conditions, the developed aptamer biosensor showed a detection limit of 24.4 nmol/L for CAP. The aptamer-based fluorescence sensor could quantify CAP in diluted tap water and lake water, exhibiting potentials for the application in real sample sensing of CAP.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05733-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety. Among various analytical methods, aptamer-based biosensors exhibit great potentials for CAP detection. Here, we developed an aptamer-based biosensor for rapid fluorescence detection of CAP based on pyrene excimer switch by using a newly selected short DNA aptamer with high affinity. The aptamer was labeled with pyrene molecules at both ends. The binding of CAP to the aptamer probe caused two pyrene molecules close to each other and the formation of a pyrene excimer, which induced the increase of the fluorescence signal from the pyrene excimer. CAP detection was achieved by measuring the fluorescence signal changes of the aptamer probes with dual pyrene labels. Under optimized conditions, the developed aptamer biosensor showed a detection limit of 24.4 nmol/L for CAP. The aptamer-based fluorescence sensor could quantify CAP in diluted tap water and lake water, exhibiting potentials for the application in real sample sensing of CAP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信